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1 Introduction

1.1 Background

A threshold counter is a shared data structure that assumes integer values. It
provides two operations: Increment changes the current counter value from v
to v 4+ 1, but does not return any information, while Read returns the value
|v/w], where v is the current counter value and w is a fixed constant. Thus,
the Read operation returns the “approximate” value of the counter to within
the constant w. Threshold counters have a variety of potential uses, most ob-
viously software barrier synchronization (see, for example, [12, Section 4.2.5],
or [7,8]). Threshold counters are interesting because they can sometimes be
implemented more efficiently than exact counters.

The most obvious way to implement a shared counter, whether threshold or
exact, is to use a single shared variable protected by a lock. However, such
centralized data structures may become “hot-spots” for shared memory com-
munication, or a “sequential bottleneck” with respect to concurrency. Aspnes
et al. [3] devised a class of distributed data structures, called balancing net-
works, that provides a decentralized way to solve a variety of counter-based
synchronization problems.

Balancing networks are made up of balancers. Informally, a balancer [3] is
a switching element with input wires and output wires. Tokens arrive asyn-
chronously on input wires, and are routed to successive output wires in “round-
robin” fashion. A balancing network is an acyclic network of balancers. A
balancing network’s depth is the length of its longest path.

Balancing networks can be used to construct counting networks [3], which
are useful for constructing shared exact counters, and smoothing networks [3],
which are useful for load balancing. Balancing networks can also be used to
construct threshold networks [3] and weak threshold networks [5], which pro-
vide highly-concurrent, low-contention implementations of threshold counters.
Each of these classes of networks supports some form of Increment operation,
implemented by passing a token through the network.

Threshold networks are interesting because there are constructions of them
with substantially lower depth than the best known, practical construction of
counting networks. While the most practical construction of a counting net-
work known to date is the bitonic counting network [3, Section 3] of depth
approximately log? w, there exists, in contrast, a threshold network construc-
tion of depth logw [3, Section 5.3].

Supporting decrements in threshold and weak threshold networks would allow



them to implement decrementable threshold counters, which have many po-
tential practical uses. For example, one might use a decrementable threshold
counter to control memory allocation policies on a multiprocessor. A thread
might increment the counter when it allocates a block of memory, and decre-
ment the counter when it frees that block. The operating system might mon-
itor the counter, requesting additional resources if the counter’s approximate
value exceeds a certain threshold. In this work, we address the question of
supporting decrements in threshold and weak threshold networks.

1.2 Results and Techniques

The principal contribution of this work is the first proof that any threshold
network implementation of a threshold counter can be extended to support a
Decrement operation that changes the counter value from v to v — 1. We also
show that the same is true of weak threshold network implementations under
the assumption that the weak threshold network is made up of balancers,
called regular, that have the same number of input and output wires.

The extension to support the Decrement operation uses a new construct called
an antitoken, which was recently introduced by Shavit and Touitou [11]. While
each token that arrives at a balancer advances the toggle and exits on the next
successive output wire, an antitoken, by contrast, sets the toggle back, and
exits on the preceding wire. Informally, an antitoken “cancels” the effect of
the most recent token, and vice versa.

Shavit and Touitou [11] proved that antitokens implement a Decrement op-
eration for a restricted class of balancing networks called a counting tree.
Subsequently, Aiello et al. [2] proved that antitokens are more powerful: they
can be used to extend counting networks and smoothing networks to support
decrements. More generally, they identified a broad class of properties, called
boundedness properties, that are preserved by the introduction of antitokens;
thus, if a balancing network satisfies any arbitrary boundedness property when
traversed by tokens alone, then it continues to satisfy that same property when
traversed by tokens and antitokens. Being a threshold counter, however, is not
a boundedness property, so different arguments are needed to reason about
the behavior of threshold networks.

The proof techniques employed by Aiello et al. [2] were purely combinatorial,
centered around the concept of a fooling pair of inputs [2, Section 3]. In this
work, we adapt and extend these techniques to encompass both threshold net-
works and weak threshold networks (under the regularity assumption) within
the structural class of balancing networks whose properties are preserved by
the introduction of antitokens and decrement operations.



1.3 Road Map

The rest of this paper is organized as follows. Section 2 provides a frame-
work for our discussion. Section 3 introduces the threshold property and the
weak threshold property, and establishes some simple properties. The paper’s
principal contribution, our results for threshold and weak threshold networks,
appears in Sections 4 and 5, respectively. We conclude, in Section 6, with a
discussion of our results and some open problems.

2 Framework

The framework for our discussion is patterned after [2, Sections 2 & 3].

2.1 Notation

For any integer ¢ > 2, x(9) denotes the integer vector (zo,21,...,24_1)%. For
any vector x(9), denotes ||x\9)|; = 292, 2;. We use 0 to denote <0 0,...,0)T,
a vector with ¢ zero entries; similarly, we use 19 to denote (1,1,...,1)T, a
vector with ¢ unit entries. A constant vector is any vector of the for 1),

for any constant c.

For any integer = and positive integer ¢, denote = div 6 and = mod ¢ the
integer quotient and remainder, respectively, of the division of = by ¢; note
that 0 < @ mod 6 < 6 — 1, while = (x div §) 6 + x mod é. Clearly, ¢ divides
z if # mod & = 0. Say that § divides x\9) if § divides each entry of x(9).

2.2 Balancers

This section is adapted from [2, Section 2.2].

Balancing networks are constructed from acyclically wired elements, called
balancers, that route tokens and antitokens through the network, and wires.
Balancers can have multiple input and output wires, in the style of Aharonson
and Attiya [1], Felten et al. [6], and Hardavellas et al. [9]. Following Shavit and
Touitou [11] and Busch et al. [2], balancers handle both tokens and antitokens.
We think of a token and an antitoken as the basic “positive” and “negative”
unit, respectively, that are routed through the balancer.

For any pair of positive integers fi, and fout, an (fin, fout)-balancer, or balancer
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Fig. 1. A balancer

for short, is a routing element receiving tokens and antitokens on f;, input
wires, numbered 0, 1, ..., fi, — 1, and sending out tokens and antitokens to fout
output wires, numbered 0,1, ..., four — 1; fin and fou are called the balancer’s
fan-in and fan-out, respectively. A regular balancer is an ( fin, fout)-balancer
such that fi, = fou; that is, fan-in equals fan-out for a regular balancer.

Tokens and antitokens arrive on the balancer’s input wires at arbitrary times,
and they are output on its output wires. Roughly speaking, a balancer acts
like a “generalized” toggle, which, on a stream of input tokens and antitokens,
alternately forwards them to its output wires, going either down or up on each
input token and antitoken, respectively. For clarity, we assume that all tokens
and antitokens are distinct.

Figure 1 depicts a balancer with three input wires and five output wires,
stretched horizontally; the balancer is stretched vertically. In the left part,
tokens and antitokens are denoted with full and empty circles, respectively;
the numbering reflects the real-time order of tokens and antitokens in an
execution where they traverse the balancer one by one (such an execution is
called a sequential execution).

For each input index ¢, 0 < ¢ < fi, — 1, we denote by z; the balancer input
state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire ¢; that is, a; is the number of tokens
that have entered on input wire ¢ minus the number of antitokens that have
entered on input wire 7. Denote xin) = (o, 2y, ..., 25 _1)T; call xUin) an input
vector. For each output index 7,0 <7 < f,u— 1, we denote by y; the balancer
output state variable that stands for the algebraic sum of the numbers of tokens
and antitokens that have exited on output wire j; that is, y; is the number
of tokens that have exited on output wire 5 minus the number of antitokens
that have exited on output wire j. Denote you) = (yo, 1, ...,y -1)"; call
y(fm”) an output vector.

The configuration of a balancer at any given time is the tuple (x{/in) y(fout)),
roughly speaking, the configuration is the collection of its input and output
state variables. In the initial configuration, all input and output wires are
empty; that is, in the initial configuration, xUin) = 0Uin) and y(eut) = glfout),



A configuration of a balancer is quiescent if there are no tokens or antitokens
in the balancer. Note that the initial configuration is a quiescent one. The
following formal properties are required for an ( fin, fout)-balancer.

(i) Safety property:in any configuration, a balancer never creates either to-
kens or antitokens spontaneously.

(ii) Liveness property: for any finite numbers ¢ of tokens and « of antitokens
that enter the balancer, the balancer reaches within a finite amount of
time a quiescent configuration where ¢ — e tokens and a — e antitokens
have exited the network, where ¢, 0 < ¢ < min{¢,a}, is the number of
tokens and antitokens that are “eliminated” in the balancer.

(iii) Step property: in any quiescent configuration, for any pair of output in-
dices j and k such that 0 <y <k < fouu — 1,0 <y; —yp < 1.

From the safety and liveness properties, it follows that for any quiescent con-
figuration (x(in), y(fou)y of a balancer, ||x{in)||; = ||y{fou)||;; that is, in a quies-
cent configuration, the algebraic sum of tokens and antitokens that exited the
balancer is equal to the algebraic sum of tokens and antitokens that entered
it. Note that the equality holds even for the case where some of the tokens
and antitokens are “eliminated” in the balancer.

We are mostly interested in quiescent configurations of a balancer. For any
input vector x\in) to balancer b, denote you) = p(x{fin)) the output vector
in the quiescent configuration that b will reach after all tokens and antitokens
that entered b have exited; write also b : x(/in) — yUout) to denote the balancer

b.

For any quiescent configuration (x(fin) y{feu)) of a balancer b : x(fin) — y(Fout),
the state of the balancer b, denoted statey((x{/in), y(fout))) "is defined to be

statey((xUn), y o)) = [y mod four

by definition of quiescent configuration, it follows that

stateb(<x(fi“),y(f°“t)>) = Hx(fi“)Hl mod fous -

Thus, for the sake of simplicity, we will denote
Stateb(x(fin)) — stateb(<x(fi“), y(fout)>) ‘

We remark that the state of an (fin, fous)-balancer is some integer in the set
0,1,..., four — 1}, which captures the “position” to which it is set as a tog-
2 2 2 2 p p g
gle mechanism. This integer is determined by either the balancer input state
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Fig. 2. A balancing network

variables or the balancer output state variables in the quiescent configuration.
Note that the state of the balancer in the initial configuration is 0.

2.3 Balancing Networks

This section is adapted from [2, Section 2.3].

A (Win, Wout)-balancing network B is a collection of interwired balancers, where
output wires are connected to input wires, having w;, designated input wires,
numbered 0,1, ..., w;y, — 1, which are not connected to output wires of bal-
ancers, having w, designated output wires, numbered 0,1, ... woy — 1, sim-
ilarly not connected to input wires of balancers, and containing no cycles. A
balancing network is regular if each of its interwired balancers is regular.

Tokens and antitokens arrive on the network’s input wires at arbitrary times,
and they traverse a sequence of balancers in the network in a completely
asynchronous way till they exit on the output wires of the network. Figure 2
depicts a balancing network with eight input and output wires using the same
conventions as in Figure 1.

For each input index ¢, 0 < ¢ < wy, — 1, we denote by x; the network input
state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire ¢; that is, x; is the difference of the
number of tokens that have entered on input wire ¢ minus the number of anti-
tokens that have entered on input wire 7. Denote x(“n) = (2, 21, ..., 2y 1)
call x(n) an input vector. For each output index j, 0 < j < foue — 1, we de-
note by y; the network outpul state variable that stands for the algebraic
sum of the numbers of tokens and antitokens that have exited on output
wire j; that is, y; is the number of tokens that have exited on output wire j
minus the number of antitokens that have exited on output wire j. Denote

Y ou) = (yo Y1y ooy Y1) 5 call o) an output vector.



The configuration of a network at any given time is the tuple of configurations
of its individual balancers. In the initial configuration, all input and output
wires of balancers are empty. The safety and liveness property for a balanc-
ing network follow naturally from those of its balancers. Thus, a balancing
network eventually reaches a quiescent configuration in which all tokens and
antitokens that entered the network have either exited the network or pair-
wise “eliminated” themselves. In any quiescent configuration of B we have
||x(n) ||} = ||y(out)||;; that is, in a quiescent configuration, the algebraic sum
of tokens and antitokens that exited the network is equal to the algebraic sum
of tokens and antitokens that entered it.

Naturally, we are interested in quiescent configurations of a network. For any
quiescent configuration of a network B with corresponding input and output
vectors x(in) and y(*out) | respectively, the state of B, denoted states(x(“in)),
is defined to be the collection of the states of its individual balancers. We
remark that we have specified x(“) as the single argument of stategs, since
x(“n) uniquely determines all input and output vectors of balancers of B,
which are used for defining the states of the individual balancers. Note that
the state of the network in its initial configuration is a collection of 0’s. For
any input vector x(“in) denote y(*ou) = B(x(“n)) the output vector in the
quiescent configuration that B will reach after all tokens and antitokens that
entered B have exited: write also B : x(*in) — y(wou) to denote the network B.

Clearly, B(0(in)) = Qlwout),
2.4  Boundedness Properties

Boundedness properties were introduced by Aiello et al. [2]. Our presentation
summarizes [2, Section 2.4]. Fix throughout any integer ¢ > 2.

For any integer K > 1, the K-smoothing property [1,3] is defined to be the
set of all vectors y(?) such that for any entries y; and y; of y9), where 0 <
gk <g—1, ly; — yr| < K; any vector y') in the K-smoothing property is a
K -smooth vector. A smoothing property is a K-smoothing property, for some
integer K > 1.

A boundedness property [2, Section 2.4] is any subset of some smoothing prop-
erty, that is closed under addition with a constant vector. Thus, a bounded-
ness property is a strict generalization of the smoothing property, since any
smoothing property is trivially a boundedness property. Since there are in-
finitely many smoothing properties, there are infinitely many boundedness
properties as well.

The step property [3] is defined to be the set of all vectors y@) such that for
any entries y; and y; of y9), where 0 < j <k <g—1,0<y; —yx <1; any



vector y(¥) in the step property is a step vector. An equivalent definition of a
step vector y@) given in [3] requires that for each index 5,0 < j <g—1, y; =
[(ly“9: —5)/g]. Note that any step vector is 1-smooth (but not vice versa);
hence. the step property is a (proper) subset of the 1-smoothing property,
which is trivially closed under addition with a step vector. It follows that the
step property is a boundedness property.

Say that a vector y\9) has the (boundedness) property 11 if y(9) € I1. Say that «a
balancing network B : x(Win) — y(wou) has the (boundedness) property I1 if for
every input vector x(“n) B(x("n)) € TI. A counting network [3] is a balancing
network that has the step property. Similarly, a K -smoothing network [1,3] is
a balancing network that has the K-smoothing property. The main result of
Aiello et al. [2] establishes that allowing negative inputs does not spoil the
boundedness property of a balancing network.

Theorem 1 (Aiello et al. [2]) Fiz any boundedness property 1l and a bal-
ancing network B : x(“n) — y(@out) sych that y(“ot) has the boundedness prop-
erty I whenever x(n) is a non-negative vector. Then, B has the boundedness
property 11.

2.5 Fooling Pairs

Our presentation follows [2, Section 4].

Say that input vectors ngi“) and X(in“) are a fooling pair to balancer b : xin) —

yteu) [2, Section 4] if stateb(ngi“)) = stateb(x(zfi“)); roughly speaking, a fooling
pair “drives” the balancer to identical states in the two corresponding quies-
cent configurations. The concept of a fooling pair can be extended from a

single balancer to a network in the natural way. Say that input vectors ngi“)

and X(me) are a fooling pair to network B : x("n) — y(wou) if for each bal-
ancer b of B, the input vectors of b in quiescent configurations corresponding
to ngi“) , respectively, are a fooling pair to b; roughly speaking, a

fooling pair “drives” all balancers of the network to identical states in the two

in)

and x."

corresponding quiescent configurations.

The next result relates the output vectors of any balancing network on certain
combinations of a fooling pair of input vectors.

Lemma 2 (Aiello et al. [2]) Consider a balancing network B : x(wn) —
(win ) (win )

yent) . Take any input vectors x1™ and x3,"™ that are a fooling pair to net-
work B. Then, for any input vector x(in),

B(ngin) _I_ X(win)) _ B(ngin)) — B(X(zwin) _I_ X(win)) _ B(X(Qwin)) )



We continue to survey some further combinatorial properties of fooling pairs
that we will use in our later proofs. Say that x(“) is a null vector to network
B x(win) — y(weu) [2 Section 3] if the vectors x(*in) and 0(*n) are a fooling
pair to B. Intuitively, a null vector “hides” itself from the network B in the
sense that it does not alter the state of B while traversing it. The next claim
determines the output of a balancing network on any non-negative multiple
of a null vector.

Lemma 3 (Aiello et al. [2]) Consider a balancing network B : x(wn) —
y(@ou) - Take any vector x(n) that is null to B. Then, for any integer k >0,

B(kxWn)y =k B(x(w)) .

For any balancing network B, denote Wy (B), the product of the fan-outs
of balancers of B. The next claim establishes a sufficient condition involving
Wout(B) for a vector to be null to B.

Lemma 4 (Aiello et al. [2]) Consider a balancing network B : x(n) —
y(wout)  Assume that Wout(B) divides x(@n) - Then, x(“n) s a null vector to B.

3 The Threshold Property and the Weak Threshold Property

In this section, we introduce the threshold property and the weak threshold
property; we prove several simple properties of them. Fix throughout any
integer weyuy > 2.

Say that a vector y(“out) is a threshold vector [3] if yu,,,—1 = U\y(w“t)Hl/womJ.
The threshold propertyis the set of all threshold vectors y(*o) It is straightfor-
ward to see that adding a constant vector to a threshold vector yields another
threshold vector; thus, the threshold property is closed under addition with
a constant vector. Moreover, take any step vector y(*eu): thus, by equivalent
definition of step vector, y,,,,_1 = H\(y(w“t) — (Wout — 1))||1/Wout |- A straight-
forward calculation reveals that y,,,,_1 = U\y(w“t) |1/ wout |- Hence, y(wout) ig g
threshold vector. It follows that the step property is a subset of the threshold

property.

Say that a vector y(*out) is a weak threshold vector [5] if there is some output
index j, possibly j # weu — 1, such that y; = |||y /wou|. The weak
threshold propertyis the set of all weak threshold vectors y{*o). As for the case
of threshold vectors, it is straightforward to see that adding a constant vector
to a weak threshold vector yields another weak threshold vector; thus, the

10



threshold property is closed under addition with a constant vector. Moreover,
the threshold property is a (proper) subset of the weak threshold property.

We start by showing that the threshold property is not a boundedness property
in all non-trivial cases.

Proposition 5 The threshold property is not a boundedness property if and
only if wouy > 2.

PROOF. Suppose first that wey, = 2. We will show that the threshold prop-

erty is identical to the step property in this case, which is a boundedness
property.

Since the step property is a subset of the threshold property, it remains to
show that the threshold property is a subset of the step property. Take any
threshold vector y; so, y1 = (3o + 41)/2]. There are two cases to consider.
If yo + 31 is even, then y1 = (yo + y1)/2, or yo — y1 = 0. If yo + y1 is odd, then
y1 = (yo+y1—1)/2, or yo —y1 = 1. It follows that in all cases 0 < yo—yy < 1;
hence, y(?) is a step vector, so that the threshold property is a subset of the
step property. It follows that the threshold property is identical to the step
property for wyy = 2. Since the step property is a boundedness property, it
follows that the threshold property is a boundedness property for wo, = 2, as
needed.

Suppose now that wyy, > 2. Assume, by way of contradiction, that the thresh-
old property is a boundedness property. By definition of boundedness prop-
erty, this implies that the threshold property is a subset of the K-smoothing
property for some integer K > 1. Consider the threshold vector y(®ou) with
Ywoni—1 = K 4+ 1, Yuopi—2 = (K + 1)(wone — 1), and y; = 0 for 0 < [ < weon — 2.
Since the threshold property is a subset of the K-smoothing property, it follows
that y(“euw) is K-smooth. However, |Yu,.,—2 — Yuwowi—1]| = (K + 1) (wout — 2)| =
(K + 1)(wout — 2) > K + 1, since woye > 2. A contradiction. O

We continue to prove an identical fact for the weak threshold property.

Proposition 6 The weak threshold property is not a boundedness property if
and only if Wou > 2.

PROOF. Suppose first that wey = 2. Recall that the weak threshold prop-
erty is closed under addition with a constant vector; thus, to show that the
weak threshold property is a boundedness property for wqy = 2, it suffices to
show the weak threshold property is a subset of the 1-smoothing property in

11



this case. So, take any weak threshold vector y(?); so, either yo = [(yo+y1)/2]
or y1 = [(yo+ y1)/2].

There are two cases to consider. If yo + y is even, then either yo = (yo+y1)/2
or y1 = (Yo + y1)/2; in either case, yo — y1 = 0. If yo + y1 is odd, then either
Yo = (Yo +uy1 — 1)/2, or y1 = (yo + y1 — 1)/2; hence, either y; —yo = 1 or
Yo — y1 = 1, so that in either case |yo — y1| = 1. It follows that in all cases
lyo — 11| < 1; hence, y?) is a l-smooth vector, so that the weak threshold
property is a subset of the 1-smoothing property. It follows that the weak
threshold property is a boundedness property for wq,, = 2, as needed.

Suppose now that weye > 2. Since the threshold property is a (proper) subset
of the weak threshold property, while by Proposition 5, the threshold property
is not a boundedness property for wyy, > 2, it follows that the weak threshold
property is not a boundedness property for wyy > 2, as needed. O

Propositions 5 and 6 imply that Theorem 1 does not apply a fortiori to either
threshold networks or weak threshold networks. Hence, in order to show that
allowing negative inputs does not spoil either threshold networks or weak
threshold networks, different arguments are needed. In the rest of this section,
we prepare such arguments.

Say that a vector y(“ou) is a saturated vector if y,,,,_1 = Hy(w“t)Hl/wout.
Clearly, any saturated vector is a threshold vector, but not vice versa. We
continue to show a simple property of saturated vectors.

Proposition 7 Consider a saturated vector y(*on). Then, y(wout) = — y(wout)
is a saturated vector.

PROOF. Clearly,

:lfju)out_1 = - yu}out_1 (Since Sf(wout) = y(wout))
(wout)
=— u (since y(w“t) is a saturated vector)
Wout
7 (wout)
_ Hy Hl (Since S/,(wout) — _ y(wout)) ,
Wout

so that y("ou) ig a saturated vector, as needed. O

We continue to show another closure property of the threshold property; more
specifically, we prove that the threshold property is closed under addition with
a saturated vector.

12



Proposition 8 Consider a threshold vector y(ou) and a saturated vector
y(wout) . Then, y(wout) 4 y(wout) s o threshold vector.

PROOF. Clearly,

yu}out_1 —I_ ywout_l =

Wout Wout

byl | bl

(since y(“eut) is threshold and y(*ou*) is saturated)
Iyl , 19|

Wout Wout

| Iy e+ H}W“””lJ

Wout

_ Hy(”“”ﬂ?(”o“””lJ

Wout

so that y(went) 4 3 (wow) g a threshold vector, as needed. O

By Proposition 7, the following is an immediate consequence of Proposition 8.

Corollary 9 Consider a threshold vector y(*os) | and a saturated vector y(ou),
Then, y(won) — y(wout) s ¢ threshold vector.

Say that a vector y(“ou) is a weak saturated vector if there is some output
index j, possibly j # wou — 1, such that y; = ||[yw)||; /weus. Clearly, any
saturated vector is a weak saturated vector, but not vice versa.

The threshold property and the weak threshold property give rise to corre-
sponding networks in the natural way. A threshold network [3] is a balancing
network B : x(¥in) — y(weut) that has the threshold property. Roughly speak-
ing, a threshold network detects input “chunks” of size wy,, on the output
wire wey, — 1, called the threshold wire. For example, the network depicted
in Figure 2 is a threshold network [3], for the cases where the input vector is
1-smooth.

A weak threshold network [5] is a balancing network B : x(Win) — y(wout) that
has the weak threshold property. Thus, like threshold networks, weak threshold
networks detect, on each input vector x(*n) input “chunks” of size woy on
some output wire j = j(xn)), 0 < j < wy, — 1, called the threshold wire for
input x(“n) . However, unlike threshold networks, it is possible that threshold
wires for different input vectors be different.

13



4 Threshold Networks

In this section, we establish that the threshold property is preserved by the
introduction of antitokens. We start by proving a technical claim.

Proposition 10 Take a threshold network B : x("n) — y(wou) = Assume that
Wout(B) divides x(win) Then, y(w“t) 1s a saturated vector.

PROOF. Since Wy (B) divides x(®n)  Lemma 4 implies that x(*=) is a null
vector to network B. Thus, by Lemma 3, B(twout X(wi“)) = Wout B(X(wi“)) =
Wout y(w“t). Since B is a threshold network, it follows that wgyg y(w“t) is a
threshold vector. By definition of threshold vector, this implies that wout Yo, —1 =
[ Wout|[y " |[1 /wout] = |ly>)|l1; hence, yuyy—1 = [[y“")|[1/wou. By defi-
nition of saturated vector, this implies that y(“ut) is a saturated vector, as
needed. O

Proposition 10 provides a sufficient condition on the input vector of a thresh-
old network, which involves structural parameters of the network itself, for the
corresponding output vector to be a saturated vector. Thus, Proposition 10
is reminiscent, in both its statement and proof, to [2, Proposition 4.1], which
provides a corresponding sufficient condition for the output vector of a bal-
ancing network that has any boundedness property to be a constant vector.
Hence, Proposition 10 establishes an analogy between constant vectors with
respect to a network that has any boundedness property, and saturated vectors
with respect to a threshold network. We continue with using Proposition 10
to show our equivalence result for threshold networks.

Theorem 11 (Threshold networks support decrements) Take a balanc-
ing network B : x(win) — y(out) sych that y(eut) is a threshold vector whenever
x(n) s a non-negative vector. Then, B is a threshold network.

PROOF. Consider any arbitrary input vector x(*in). We will show that B(x(“n))
is a threshold vector.

Construct from x(“n) an input vector x(*) such that for each index 7, 0 <
i < win — 1, ; is the least multiple of Wy (B) such that z; + x; > 0. Clearly,
Woui(B) divides x(“in). By Proposition 10, B(x(“i)) is a saturated vector, while
by Lemma 4, x(“n) is a null vector to network B. We apply Lemma 2 with

x(win) for ngi“), 0(win) for X(Qwi“), and x(@in) for X(wi“); we obtain that
B(xtwin) 4 x(uin)y = B(x(wim))y 4 B(x(m)) — B(olwin))

14



:B(X(wm )‘|’B( (win )7
SO that B( wm ) = B(f((win) _|_ X(win)) — B(f((wln))

Since x(Win) 4 X(wi“) is a non-negative input vector, it follows, by assumption
on B, that B(x (win —I—X(wm)) is a threshold vector. Smce B(x wm)) is a saturated
vector, Corollary 9 implies that B(x (2in ) is a threshold vector, as needed. O

Theorem 11 establishes that threshold networks continue to operate correctly
when antitokens are added; since an antitoken represents a decrement by one
operation, this implies that threshold networks are capable of supporting this
operation.

The proof of Theorem 11 used Lemmas 2 and 4, which, however, hold for any
balancing network; it used Corollary 9, which determines a special class of
vectors, namely, the saturated vectors, to provide closure under subtraction
to the threshold property; finally, it used Proposition 10, which provides a
sufficient condition for the output of a threshold network to be a saturated
vector. We remark that the general structure of the proof of Theorem 11 closely
follows the one of [2, Theorem 4.2] (quoted as Theorem 1 in this paper). The
new ideas that we employed in our proof are the precise identification of the
class of null vectors for threshold networks (namely, the saturated vectors)
and the various closure properties these vectors provide.

5 Weak Threshold Networks

In this section, we establish that the weak threshold property is preserved
by the introduction of antitokens, under the regularity assumption on weak
threshold networks.

We start with outlining, by way of a counter-example, a particular problem
that one encounters while trying to extend the proot of Theorem 11 to weak
threshold networks.

Consider the vector y©® = (9,4,1)(D, Since |||ly®|1/3] = 4 and 3, =

y(® is a weak threshold vector. Cons1der also the vector Sf = (2,3, )M
Since ||[y?])1/3 = 2 and yo = 2, ¥ is a (weak) saturated vector. However,
vy — 3G = (7,1,0)®), which is not a weak threshold vector because |||y —
v[1/3] = 2, while no entry of y® — y© equals 2. Hence, y® — y®) is
not a weak threshold vector, which implies that the weak threshold property
is not closed under subtraction of a (weak) saturated vector. Therefore, an
analog of Corollary 9 for weak threshold vectors is doomed to fail, and some
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additional care is needed in extending the proof of Theorem 11 (which relies
on Corollary 9) to weak threshold networks.

We have only been able to extend Theorem 11 to the case of regular weak
threshold networks, namely weak threshold networks such that each of their
balancers has the same fan-in and fan-out. To this end, we will need a simple
technical claim which has been shown by Herlihy et al [10, Lemma 4.1] for
networks consisting of balancers with fan-in and fan-out equal to two, and
which, apparently, holds for any regular balancing network.

Lemma 12 (Herlihy et al. [10]) Tuke a regular balancing network B : x(*in) —
y(@ou)  Then, for any integer ¢ > 0, B(c l(wi“)) = ¢ 1(wou),

Roughly speaking, Lemma 12 asserts that if exactly ¢ tokens enter on each
input wire, then exactly ¢ tokens will exit from each output wire. We are now
ready to show that regular weak threshold networks support decrements.

Theorem 13 (Regular weak threshold networks support decrements)
Take a regular balancing network B : x(n) — y(wout) syeh that y(@ou) is a weak
threshold vector whenever x(“n) is a non-negative vector. Then, B is a weak
threshold network.

PROOF. Consider any arbitrary input vector x(*in). We will show that B(x (2in )
is a weak threshold vector.

Construct from x(“n) a constant input vector x("in) = ¢1(*n) where ¢ is the
least multiple of Wy (B) such that for each index ¢,0 < < wiy—1, c4a2; > 0.
(Alternatively, ¢ is the mazimum &;, 0 < i < wy, — 1, where &; is the least
multiple of Woyu(B) such that &; +a; > 0.) Clearly, Wou(B) divides x(win) By
Lemma 4, X(™) is a null vector to network B. We apply Lemma 2 with x(n)
for x§ 1“), 0(win) for X(Qwi“), and x(n) for x(“n); we obtain that

B(f((wi“) T X(wm)) — B(X(wi“ ) + B(f( Win ) _ B(O(wi“))
= Bx") + BE).

SO that B( wm ) = B(f((win) _|_ X(win)) — B(f((wln))

Since x("in) = ¢1(¥in) it follows by Lemma 12 that B(x("in)) = ¢1(weut) | Since
x(win) 4 X(wm) is a non-negative input vector, it follows, by assumption on B,
that B( (win) 4 X(wm)) is a weak threshold vector. Let 7 be the threshold wire
for B(x (win) 4 5 (win ) Since B(x (tin ) = cl(w“t), B(f((wi“))j = ¢ so that

Blac ), = (") 4 x) — B(x(),
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= B(f((win) _I_ X(win))]‘ —cC
It + x<win>“1J

Wout

(since B(f((wi“) + X(wi“)) is weak threshold)
|t b

Wout

Wout

et waﬂlJ )

(by definition of x(*in))

Wout

] I
B Wout ‘

It follows that B(x(“in)) is a weak threshold vector, as needed. O

6 Conclusion

We have shown that any balancing network that satisfies the threshold prop-
erty on all non-negative input vectors, it will also satisfy it for any arbitrary
input vector. We have also shown a corresponding fact for the weak threshold
property, assuming that the network is regular. It would be interesting to see
whether or not the regularity assumption can be dropped for weak thresh-
old networks. Our results imply that, in designing and verifying threshold
and (regular) weak threshold networks, it is possible to restrict attention to
non-negative input vectors, which conveniences design and simplifies proofs.

Our proofs have built on the combinatorial techniques introduced in [2]. It
would still be interesting to find further applications of these techniques to
other classes of balancing networks. A recent paper [4] provides a formal char-
acterization of all properties of balancing networks that are preserved under
the introduction of decrement operations via antitokens.
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