
On the Stability of Compositions of Universally
Stable, Greedy Contention-Resolution Protocols

D. Koukopoulos1, M. Mavronicolas2, S. Nikoletseas1, and P. Spirakis1�

1 Department of Computer Engineering & Informatics, University of Patras and
Computer Technology Institute (CTI), Riga Fereou 61, P. O. Box 1122, 261 10

Patras, Greece. {nikole,koukopou,spirakis}@cti.gr
2 Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus.

mavronic@ucy.ac.cy

Abstract. A distinguishing feature of today’s large-scale platforms for
distributed computation and communication, such as the Internet, is
their heterogeneity, predominantly manifested by the fact that a wide
variety of communication protocols are simultaneously running over dif-
ferent distributed hosts. A fundamental question that naturally poses
itself concerns the preservation (or loss) of important correctness and
performance properties of the individual protocols when they are com-
posed in a large network. In this work, we specifically address stabil-
ity properties of greedy, contention-resolution protocols operating over a
packet-switched communication network.
We focus on a basic adversarial model for packet arrival and path deter-
mination for which the time-averaged arrival rate of packets requiring a
single edge is no more than 1. Stability requires that the number of pack-
ets in the system remains bounded, as the system runs for an arbitrarily
long period of time. It is known that several commonly used contention-
resolution protocols, such as LIS (Longest-in-System), SIS (Shortest-in-
System), NTS (Nearest-to-Source), and FTG (Furthest-to-Go) are univer-
sally stable in this setting – that is, they are stable over all networks. We
investigate the preservation of universal stability under compositions for
these four greedy, contention-resolution protocols. We discover:
– The composition of any two protocols among SIS, NTS and FTG is
universally stable.

– The composition of LIS with any of SIS, NTS and FTG is not uni-
versally stable: we provide interesting combinatorial constructions
of networks over which the composition is unstable when the adver-
sary’s injection rate is at least 0.519.

– Through an involved combinatorial construction, we significantly im-
prove the current state-of-the-art record for the adversary’s injection
rate that implies instability for FIFO protocol to 0.749. Since 0.519 is
significantly below 0.749, this last result suggests that the potential
for instability incurred by the composition of two universally stable
protocols may be worse than that of some single protocol that is not
universally stable.
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1 Introduction

1.1 Motivation-Framework

Heterogeneous Networks. A key feature of contemporary large-scale plat-
forms for distributed communication and computation, such as the Internet, is
their heterogeneity. Heterogeneity comes around in many different flavors. For
example, the specifics of how the computers in different parts of the network
are connected (directly or indirectly) with each other, and the properties of the
links that foster the interconnection, is difficult to characterize uniformly. Sec-
ond, different traffic sources over the Internet (due to varying mechanisms for
supporting different classes and qualities of service) result in a heterogeneous
mix of traffic traces. Third but not least, although, conceptually, the Internet
uses a unified set of protocols, in practice each protocol has been implemented
with widely varying features (and of course bugs). (See the recent interesting
article by Floyd and Paxson [7] for an extended discussion on the heterogene-
ity of Internet.) Thus, heterogeneity is a crucial feature that makes it difficult
to model, verify and analyze the behavior of such large-scale communication
networks.
Objectives. In this work, we embark on a study of the impact of heterogeneity
of distributed systems on their correctness and performance properties. More
specifically, we wish to pose the general question of which correctness and per-
formance properties of individual, different modules of a distributed system are
maintained and which are not when such modules are composed into a larger,
heterogeneous distributed system. We choose, as a test-bed, the case of distinct
communication protocols that are simultaneously running on different hosts in
a distributed system. We ask, in particular, which (and how) stability proper-
ties of greedy, contention-resolution protocols operating over a packet-switched
communication network are maintained under composition of such protocols.
Framework of Adversarial Queueing Theory. We consider a packet-
switched communication network in which packets arrive dynamically at the
nodes with predetermined paths, and they are routed at discrete time steps
across the edges. We focus on a basic adversarial model for packet arrival and
path determination that has been recently introduced in a pioneering work by
Borodin et al. [3], under the name Adversarial Queueing Theory. Roughly speak-
ing, this model views the time evolution of a packet-switched communication
network as a game between an adversary and a protocol. At each time step,
the adversary may inject a set of packets into some nodes. For each packet, the
adversary specifies a simple path (including an origin and destination) that the
packet must traverse; when the packet arrives to destination, it is absorbed by
the system. When more than one packets wish to cross a queue at a given time
step, a contention-resolution protocol is employed to resolve the conflict. A cru-
cial parameter of the adversary is its injection rate r, where 0 < r < 1. Among
the packets that the adversary injects in any time interval I, at most �r|I|� can
have paths that contain any particular edge. Such a model allows for adver-
sarial injection of packets, rather than for injection according to a randomized,
oblivious process (cf. [4]).
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Table 1. Contention-resolution protocols considered in this paper. (US stands for
universally stable)

Protocol name Which packet it advances: US
Shortest-in-System (SIS) The most recently injected packet into the network

√
Longest-in-System (LIS) The least recently injected packet into the network

√
Furthest-to-Go (FTG) The furthest packet from its destination

√
Nearest-to-Source (NTS) The nearest packet to its origin

√
First-In-First-Out (FIFO) The earliest arrived packet at the queue X

Stability. Stability requires that the number of packets in the system remains
bounded, as the system runs for an arbitrarily long period of time. Naturally,
achieving stability in a packet-switched communication network depends on
the rate at which packets are injected into the system, and on the employed
contention-resolution protocol. Till our work, the study of stability has focused
on homogeneous networks, that is, on networks in which the same contention-
resolution protocol is running at all queues. In this work, we embark on a study
of the effect of composing contention-resolution protocols on the stability of the
resulting system. (By composition of contention-resolution protocols, we mean
the simultaneous use of different such protocols at different queues of the sys-
tem.)
Greedy Contention-Resolution Protocols. We consider only greedy
protocols– ones that always advance a packet across a queue (but one packet
at each discrete time step) whenever there resides at least one packet in the
queue. The protocol specifies which packet will be chosen. We study five greedy
protocols (all of which enjoy simple implementations): Say that a protocol is
stable [3] on a given network if it induces a bounded number of packets in the
network against any adversary with injection rate less than 1. (Note that the
bound may depend on parameters of the network.) The first four of these proto-
cols (namely, SIS, LIS, FTG and NTS) are universally stable– each is stable on all
networks [1, Section 2.1]. In contrast, FIFO (one of the most popular queueing
disciplines, because of its simplicity) is not universally stable [1, Theorem 2.10].
Approach.We consider all combinations of two from the four universally stable
protocols, and we examine whether the corresponding composition is universally
stable. We either show that it is, or we demonstrate a network and an adver-
sary (with some specific injection rate less than 1) such that the composition
is not stable on the network (against the adversary). In addition, in order to
qualitatively evaluate how unstable are the compositions that turn out not to
be universally stable, we also consider the FIFO protocol, which is known not be
universally stable; we measure the instability of the composition against that of
FIFO by establishing the best lower bound we can on the adversary’s injection
rate that implies instability for the composition and for FIFO, and we compare
the two resulting lower bounds.



On the Stability of Compositions 91

1.2 Contribution

Summary of Results. In this work, we initiate the study of the stability proper-
ties of heterogeneous networks with compositions of greedy contention-resolution
protocols, such as SIS, LIS, FTG, NTS and FIFO, running on top of them. Our
results are three-fold; they are summarized as follows:

– We establish universal stability for compositions of any two among the (uni-
versally stable) SIS, FTG, and NTS protocols (Theorem 1).

– We establish that, surprisingly, the composition of LIS with any of SIS, NTS
and FTG is not universally stable (Theorem 2).
To show this, we provide interesting combinatorial constructions of networks,
for each queue of which we specify the contention-resolution protocol to be
used, so that the composition of the protocols is unstable if the injection
rate of the adversary is at least 0.519.

– We establish a new lower bound on the instability threshold of the FIFO pro-
tocol. More specifically, we provide an involved combinatorial construction
of a network containing only FIFO queues and an adversary with injection
rate 0.749 that result to instability (Theorem 3).
This result not only significantly improves the current record (that is, the
lowest known) instability threshold for FIFO [5, Theorem 3.1]. More impor-
tantly perhaps, it provides, as we argue, a standard for evaluating the lower
bound (0.519) on the instability thresholds we established for the not uni-
versally stable compositions (Theorem 2). Since 0.519 is substantially less
than 0.749 (in the climax [0.1]), and since lowering the instability thresh-
old for FIFO has undergone a series of subsequent improvements in recent
papers in the literature [1,8,5] culminating to the 0.749 shown in this work,
these together may modestly suggest that composing two universally stable
protocols may, surprisingly, turn out to exhibit more unstable behavior than
a single protocol that is already known to not be universally stable (such as
FIFO).

The combinatorial constructions of networks and adversaries that we have
employed for showing that certain compositions of universally stable protocols
are not universally stable significantly extend ones that appeared before in [1,3,
5]. In more detail, some of the tools we devise in order to obtain constructions
of networks and adversaries that imply improved bounds are the following:

– We employ combinatorial constructions of networks with multiple ”parallel”
paths between a common origin and destination; we judiciously use such
paths for the simultaneous injection of various non-overlapping flows.

– We introduce and use the technical notions of investing flow and short inter-
mediate flow; these are some special cases of packet flows that we use in our
adversarial constructions that consist of inductive phases. Roughly speaking,
an investing flow injects packets in a phase which will remain in the system
till the beginning of the next phase, in order to guarantee the induction
hypothesis for the next phase; on the other hand, short intermediate flows
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consist of packets injected on judiciously chosen paths of the network and
their role is to block all packets of the investing flows (so that the latter will
indeed remain in the system).

1.3 Related Work and Comparison

Composing Protocols and Objects. The issue of composing distributed pro-
tocols (resp., objects) to obtain other protocols (resp., objects), and the prop-
erties of the resulting (composed) protocols (resp., objects), has a rich record
in Distributed Computing Theory (see, e.g., [10]). For example, Fernández et
al. [6] study techniques for the composition of (identical) causal DSM systems
from smaller modules each individually satisfying causality. Herlihy and Wing [9]
establish that a composition of linearizable memory objects (possibly distinct),
each managed by its own protocols, preserves linearizability. In the community of
Security Protocols, the statement that security is not compositional is considered
to be folklore [11].
Adversarial Queueing Theory. The model of Adversarial Queueing Theory
was developed by Borodin et al. [3] as a more realistic model that replaces
traditional stochastic assumptions made in Queueing Theory (cf. [4]) by more
robust, worst-case ones. Subsequently, the Adversarial Queueing Theory model,
and corresponding stability and instability issues, received a lot of interest and
attention (see, e.g., [1,2,5,8,12]).
Stability and Instability Results. The universal stability of SIS, LIS, NTS
and FTG was established by Andrews et al. [1, Section 2.1]. The instability of
FIFO (on a specific network) was first established by Andrews et al. [1, Theorem
2.10]. Lower bounds of 0.85, 0.84 and 0.8357 on the instability threshold of
FIFO (in the model of Adversarial Queueing Theory) were presented before by
Andrews et al. [1, Theorem 2.10], Goel [8] and Diaz et al. [5, Theorem 3]. To the
best of our knowledge, no previous work addressed the stability and instability
properties of networks consisting of queues using multiple contention-resolution
protocols.
Summary. For purpose of completeness and comparison, we summarize, in Ta-
ble 2, all results shown in this work and in [1] that provide bounds on stability
and instability properties of the universally stable, greedy contention-resolution
protocols, and their compositions, that we considered.

Table 2. Range of injection rates for which the composition of the two protocols is
unstable on some network. We denote US the universally stable compositions

LIS SIS NTS FTG
LIS US ([1])
SIS [0.519,1] (Thm. 2) US ([1])
NTS [0.519,1] (Thm. 2) US (Thm. 1) US ([1])
FTG [0.519,1] (Thm. 2) US (Thm. 1) US (Thm. 1) US ( [1])
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2 Preliminaries

The definition of a bounded adversary A of rate (r, b) (where b ≥ 1 is a natural
number and 0 < r < 1) in the Adversarial Queueing Theory model [3] requires
that for any edge e and any interval I, the adversary injects no more than
r|I| + b packets during I that require edge e at their time of injection. Such
a model allows for adversarial injection of packets that are “bursty” using the
integer b > 0. Say that a packet p requires an edge e at time t if e lies on the
path from its position at time t to its destination.
This definition for the adversary is used in Section 3 for proving that spe-

cific compositions of protocols are universally stable. On the other hand, when
we consider adversarial constructions for proving instability of compositions of
specific protocols (Section 4) and FIFO protocol (Section 5) in which we want to
derive lower bounds, using an adversary with zero “burstiness” (that is, taking
b = 0) results in more simplified proofs. Thus, for these purposes, we say that
an adversary A has injection rate r if for every t ≥ 1, every interval I of t steps,
and every edge e, it injects no more than r|t| packets during I that require edge
e at the time of their injection. Clearly, an instability result for an adversary
with no burstiness (b = 0) applies also to an adversary that may use burstiness
(b ≥ 0). Also, for simplicity, and in a way similar to that in [1], we omit floors and
ceilings and sometimes count time steps and packets roughly. This only results
to loosing small additive constants while we gain in clarity.
In order to formalize the behavior of a network under the Adversarial Queue-

ing model, we use the notions of system and system configuration. A triple of the
form (G, A, P ) where G is a network, A is the adversary and P is the used pro-
tocol on the network queues is called a system. Furthermore, the configuration
Ct of a system (G, A, P ) in every time step t is a collection of sets {St

e : eεG},
such that St

e is the set of packets waiting in the queue of the edge e at the end
of step t. If the current system configuration is Ct, then we can go to the system
configuration Ct+1 for the next time step as follows: (i) Addition of new packets
to some of the sets St

e, each of which has an assigned path in G, and (ii) for each
non-empty set St

e deletion of a single packet pεS
t
e and its insertion into the set

St+1
f where f is the edge following e on its assigned path (if e is the last edge
on the path of p, then p is not inserted into any set.) The time evolution of the
system is a sequence of such configurations C1, C2, . . ., such that for all edges e
and all intervals I, no more than r|I| + b packets are introduced during I with
an assigned path containing e. An execution of the adversary’s construction on
a system (G, A, P ) determines the time evolution of the system configuration.
In the constructions of executions in Sections 4 and 5, we split time into

phases. In each phase, we study the evolution of the system configuration by
considering corresponding time rounds. For each phase, we inductively prove
that the number of packets of a specific subset of queues in the system increases
in order to guarantee instability. This inductive argument can be applied repeat-
edly, thus showing instability. In addition, our constructions use networks that
can be split into two symmetric parts. Thus, the inductive argument needs to
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be applied twice to establish increase in the number of packets residing at two
different queues.
Also, in order to make our inductions work, we assume that there is a suf-

ficiently large number of packets s0 in the initial system configuration. This
will imply instability results for networks with an empty initial configuration, as
established by Andrews et al. [1, Lemma 2.9].

3 Universally Stable Compositions of Universally Stable
Protocols

In order to prove the following theorem we make the following assumptions
and definitions. Let 0 < ε < 1 be a real number. We assume that r = 1 − ε,
m is the number of network edges, and d is the length of the longest simple
directed path in the network. Let us now define a sequence of numbers by the
recurrence kj =

mkj−1+mb
ε , where k1 = mb

ε . Our techniques here are motivated
by corresponding techniques in Andrews et al. [1].

Theorem 1. If the used queueing disciplines in the system are a) SIS and FTG,
then the system (G, A, SIS, FTG) is stable, no queue ever contains more than
kd packets and no packet spends more than 1

ε (db+
∑d

i=1 ki) steps in the system,
while if they are b) NTS and FTG or c) SIS and NTS, then there are never more
than kd packets in the system and no queue contains more than 1

ε (kd−1 + b)
packets, where d is the length of the longest simple directed path in G and ki is
an appropriately defined sequence of numbers.

Proof. (Sketch) In order to prove this theorem, we first show the following two
lemmas:

Lemma 1. Let p be a packet waiting in a queue e at time t and suppose there
are currently k − 1 other packets in the system requiring e that have priority
over p. Then p will cross e within the next k+b

ε steps if the queueing discipline
in queue e is SIS, NTS or FTG.

Lemma 2. When a packet p crossing its path arrives at the jth edge on its path,
there are at most kj −1 other packets requiring to traverse this edge with priority
over p, if the used queueing protocol is a) SIS or NTS, b) SIS or FTG, and c)
NTS or FTG.

Lemma 1 claims that if a packet p waits in a queue e at time t and there are
currently k−1 other packets in the system requiring to traverse edge e that have
priority over p, then p will cross e within the next k+b

ε steps either the queueing
discipline of queue e is SIS or NTS or FTG. In Lemma 2, we specialize Lemma 1
taking into account the distance of the queue e, in which packet p arrives at
time t crossing its specified path, in relation to the first queue in its path. In this
case, we prove that if queue e has distance j from the first queue on p′s path
then there are at most kj − 1 other packets in the system requiring to traverse
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the edge e that have priority over p when the system queues have as protocols
(a) SIS or FTG, (b)NTS or FTG and (c) SIS or NTS.
Then based on these two lemmas, we prove this theorem using contradiction.

Firstly, let us assume that there are kd + 1 packets at some time all requiring
the same edge. Then, the packet with the lowest priority of the kd + 1 packets
contradicts Lemma 2. Combining both lemmas, a packet p takes at most kj+b

ε
steps to cross the jth edge on its path. Therefore, the upper bound for delay is

D =
db+

∑d

i=1
ki

ε . No packet spends more than D steps in the system. 	


4 Unstable Compositions of Universally Stable Protocols

In this section, we show that the composition of LIS protocol with any of SIS, NTS
and FTG protocols is not universally stable. Before proceeding to the adversary
constructions for proving instability we give two basic definitions.

Definition 1. We denote Xi the set of packets that are injected by the adversary
into the system in the ith round of a phase. These packet sets are characterized
as investing flows because the number of their packets that will remain into the
system at the end of the phase in which they have been injected, will be a portion
of the packets that will be used as the initial ones in the next phase ensuring the
reproduction of the induction hypothesis.

Definition 2. We denote Si,k the kth set of packets the adversary injects into
the system in the ith round of a phase. These packet sets are characterized as
short intermediate flows because their only purpose is to block other packet sets
by using suitable paths.

Theorem 2. Let r ≥ 0.519. There is a network N1 and an adversary A of
rate r, such that the system (N1,A,Queueing Disciplines) is unstable, if the used
queueing disciplines are a) LIS and SIS, b) LIS and NTS or c) LIS and FTG.

Proof. (Sketch) Part a) Consider the network N1 in Figure 1.
Induction Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues f

′
4, f

′
7, f

′
8 (in total) requiring to traverse the edges

e0, f1, f2, f4, f7.
Induction Step: At the beginning of phase j + 1 there will be more than sj
packets that will be queued in the queues f4, f7, f8, requiring to traverse the
edges e1, f

′
1, f

′
2, f

′
4, f

′
7.

The intuition behind this adversary construction and network topology is
basically the preservation of the newly injected investing flows in each round of
a phase inside the network until the end of the phase during which they have
been injected. The tools we use to achieve this goal are the injections of short
intermediate flows (Si,k) and the introduction of parallel edges (f4, f5, f6 and
f7, f8, f9) in the network topology. Although the short intermediate flows do not
contribute actually to the number of packets that will be used as the initial flow
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Fig. 1. The network N1 running a composition of LIS and SIS

for the next phase, their role is essential as they are used for blocking investing
flows of packets in consecutive rounds. Moreover, some of them have another
role, too. They block short intermediate flows that have been injected in certain
rounds in order they can be used for blocking investing flows in the next round
of the one in which they have been injected. Also, an important point we should
mention is the use of the short intermediate flow that is injected in the first
round of a phase j (S1,1 − flow) to block a portion of the initial packets that
are in the system at the beginning of the phase (sj) in order these packets to be
used twice for blocking investing flow X1 to the first and the next round of the
current phase. As far as concerns the parallel edges, the purpose of their presence
in the network topology is to be guaranteed that the paths of the packet flows
injected in the same round do not overlap. The first set of parallel edges f4, f5, f6
is used in order short intermediate flows that are injected at the same round to
not overlap, while the second set of parallel edges f7, f8, f9 is used mainly in
order the paths of investing flows and the paths of short intermediate flows that
are injected at the same round to not overlap.

We will construct an adversary A such that the induction step will hold.
Proving that the induction step holds, we ensure that the induction hypothesis
will hold at the beginning of phase j+1 for the symmetric edges with an increased
value of sj , sj+1 > sj . In order to prove that the induction step works, we should
consider that there is a large enough number of packets sj in the initial system
configuration. During phase j the adversary plays four rounds of injections. The
sequence of injections is as follows:

Round 1: It lasts sj time steps. At the beginning of this round, there are sj
packets (S − flow) in the queues f ′

4, f
′
7, f

′
8 (in total) requiring to traverse the

edges e0, f1, f2, f4, f7.
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Adversary’s behavior. During this round the adversary injects in queue e0 a
set X1 of |X1| = rsj packets wanting to traverse the edges e0, f3, f4, f7, e1, f ′

1,

f
′
2, f

′
4, f

′
7. At the same time, the adversary injects a set S1,1 of |S1,1| = rsj

packets in queue f1 that require to traverse only the edge f1.
At the end of this round, there are rsj packets of S−flow in queue f1 wanting

to traverse the edges f1, f2, f4, f7. Also, there is a set X1 of |X1| = rsj packets
in queue e0 wanting to traverse the edges e0, f3, f4, f7, e1, f

′
1, f

′
2, f

′
4, f

′
7.

Round 2: It lasts rsj time steps. Adversary’s behavior: During this round the
adversary injects a setX2 of |X2| = r2sj packets in queue e0 requiring to traverse
the edges e0, f3, f4, f8, e1, f

′
1, f

′
2, f

′
4, f

′
7. In addition, the adversary injects a set

S2,1 of |S2,1| = r2sj packets in queue f2 wanting to traverse the edges f2, f5, f7.
At the end of this round, there are rsj packets of X1−flow in queue f4 want-

ing to traverse the edges f4, f7, e1, f
′
1, f

′
2, f

′
4, f

′
7. Also, there are r

2sj packets of
X2−flow in queue e0 requiring to traverse the edges e0, f3, f4, f8, e1, f ′

1, f
′
2, f

′
4, f

′
7

and r2sj packets of S2,1−flow in queue f2 wanting to traverse the edges f2, f5, f7.
Round 3: It lasts r2sj time steps. Adversary’s behavior: During this round
the adversary injects a set X3 of |X3| = r3sj packets in queue f4 wanting to
traverse the edges f4, f9, e1, f

′
1, f

′
2, f

′
4, f

′
7. Also, the adversary injects a set S3,1

of |S3,1| = r3sj packets in queue f5 wanting to traverse the edges f5, f7. Finally,
the adversary injects a set S3,2 of |S3,2| = r3sj packets in queue f2 wanting to
traverse the edges f2, f6, f8.

At the end of this round, there are rsj packets of X1 − flow in queues f4, f7
in total (rsj − r2sj packets in queue f4 and rsj packets in queue f7) wanting
to traverse the edges f4, f7, e1, f

′
1, f

′
2, f

′
4, f

′
7. Also, in queue f4 there are r

2sj
packets of X2 − flow requiring to traverse the edges f4, f8, e1, f ′

1, f
′
2, f

′
4, f

′
7 and

r3sj packets of X3 − flow wanting to traverse the edges f4, f9, e1, f ′
1, f

′
2, f

′
4, f

′
7.

Moreover, there are r3sj packets of S3,1 −flow in queue f5 requiring to traverse
the edges f5, f7 and r3sj packets of S3,2 −flow in queue f2 requiring to traverse
the edges f2, f6, f8.
Round 4: It lasts r3sj time steps. Adversary’s behavior: During this round,
the adversary injects a set X4 of |X4| = r4sj packets in queue f3 wanting to
traverse the edges f3, f4, f7, e1, f

′
1, f

′
2, f

′
4, f

′
7. Besides the short intermediate flows

(S3,1, S3,2) that have been injected into the system during the previous round
and still remain into the system at the beginning of this round, the system
configuration at the beginning of round 4 also consists of the investing flows
X1, X2, X3 that have been injected into the system during the previous rounds.
During this round, these investing flows along with the investing flow that is
injected into the system during this round (X4 − flow) continue to remain into
the system independently of the adversarial injection rate r because they are
blocked by the short intermediate flows S3,1, S3,2.

At the end of this round, the number of packets in queues f4, f7, f8 requiring
to traverse the edges e1, f

′
1, f

′
2, f

′
4, f

′
7 is

sj+1 = |X1|+ |X2|+ |X3|+ |X4| = rsj + r2sj + r3sj + r4sj (1)



98 D. Koukopoulos et al.

In order to have instability, we must have sj+1 > sj . Therefore from (1), we
should have rsj + r2sj + r3sj + r4sj > sj , i.e. r ≥ 0.519. This argument can be
repeated for an infinite number of phases ensuring that the number of packets
at the end of a phase will be bigger than at the beginning of the phase.

Part b) This part of the theorem can be proved similarly to the previous part.
One difference here is the replacement of the protocol of queues that use SIS by
NTS. The topology of the used network N2 and the adversary construction for
proving instability of the system (N2,A,LIS,NTS) are similar to the first part of
the theorem. Especially, short intermediate flows have the same blocking effects
as before over investing flows because their injection in the same queues as before
are enough to guarantee their priority over investing flows when they conflict in
queues that use NTS.

Part c) This part of the theorem can be proved similarly to the previous parts.
Thus, the construction of the adversary A for proving instability of the system
(N3,A,LIS,FTG) is similar to the other parts. As far as concerns the network
topology a difference here is that the queues, that have as protocol SIS in the
first part, are now using FTG. Another difference that concerns the used network
topology is that it contains additional paths that start at FTG queues and have
sufficient lengths, such that the injected short intermediate packet flows have the
same blocking effects over the injected investing packet flows, as in the proofs of
the previous parts, when they conflict in queues that use FTG. 	


5 A Lower Bound for FIFO Instability

In this section, we present an adversary construction that lowers significantly
the injection rate bound for which FIFO is unstable to 0.749 on the network that
we consider in Figure 2.

Theorem 3. Let r ≥ 0.749. There is a network N and an adversary A of rate
r, such that the (N , A, FIFO) system is unstable.

Proof. (Sketch) We consider the network N in Figure 2.
Induction Hypothesis: At the beginning of phase j, there are sj packets that are
queued in the queues e0, f

′
3, f

′
4, f

′
5, f

′
6 (in total) requiring to traverse the edges

e0, f1, f3, f5, all these packets are able to depart from their initial edges to the
symmetric part of the network (f1, f3, f5) as a continuous flow in sj time steps,
and the number of packets that are queued in queues f

′
4, f

′
6 is bigger than the

number of packets that are queued in queues f
′
3, f

′
5.

Induction Step: At the beginning of phase j + 1 there will be more than sj
packets (sj+1 packets) that will be queued in the queues f3, f5, f4, f6, e1 (in
total) requiring to traverse the edges e1, f

′
1, f

′
3, f

′
5, all of which will be able to

depart from their initial edges to the symmetric part of the network (f
′
1, f

′
3, f

′
5)

in sj+1 time steps as a continuous flow and the number of packets that will be
queued in queues f4, f6 will be bigger than the number of packets that will be
queued in queues f3, f5.
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Fig. 2. FIFO network N

Notice that our inductive argument claims that if at the beginning of phase
j all sj packets, that are queued in queues e0, f

′
3, f

′
4, f

′
5, f

′
6 requiring to traverse

the edges e0, f1, f3, f5, manage to traverse their initial edges in sj time steps as
a continuous flow, then at the beginning of phase j+1 all sj+1 packets, that will
be queued in queues f3, f5, f4, f6, e1 requiring to traverse the edges e1, f

′
1, f

′
3, f

′
5,

will be able to traverse their initial edges in sj+1 time steps as a continuous flow.
This argument guarantees the reproduction of the induction hypothesis in queues
f3, f5, f4, f6, e1 even if there are flows (in particular in queues f3, f4, f5) that do
not want to traverse the edges e1, f

′
1, f

′
3, f

′
5, the packets of which are regularly

spread among the packets that want to traverse these edges. Furthermore, this
argument implies the third part of the inductive argument, which claims that if at
the beginning of phase j, the number of packets that are queued in queues f

′
4, f

′
6

is bigger than the number of packets that are queued in queues f
′
3, f

′
5, then at

the beginning of phase j+1 the number of packets that will be queued in queues
f4, f6 will be bigger than the number of packets that will be queued in queues
f3, f5. This happens because in the first round of the adversary’s construction
we inject packets in queue f

′
4 and if the third part of the induction hypothesis

does not hold, then we cannot guarantee that all the initial sj packets will depart
their initial edges to the edges f1, f3, f5 in sj time steps as a continuous flow.
However, we include it into the induction hypothesis for readability reasons.
We will construct an adversary A such that the induction step will hold.

Proving that the induction step holds, we ensure that the induction hypothesis
will hold at the beginning of phase j+1 for the symmetric edges with an increased
value of sj packets, sj+1 > sj . From the induction hypothesis, initially, there
are sj packets (called S − flow) in the queues e0, f

′
3, f

′
4, f

′
5, f

′
6 requiring to

traverse the edges e0, f1, f3, f5. In order to prove the induction step, it is assumed
that there is a set S with a large enough number of |S| = sj packets in the
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initial system configuration. During phase j the adversary plays three rounds of
injections. The sequence of injections is as follows:
Round 1: It lasts sj time steps. Adversary’s behavior: During these steps, the
adversary injects a set X of |X| = rsj packets in queue f ′

4 wanting to traverse
the edges f

′
4, f

′
6, e0, f2, f3, f5, e1, f

′
1, f

′
3, f

′
5 and a set S1 of |S1| = rsj packets in

f1 wanting to traverse f1.
At the end of this round, all the packets of the set X are queued in e0, while

in queue f1 remains a set Srem of |Srem| = rsj

r+1 packets from the set S and a set

S1,rem of |S1,rem| = r2sj

r+1 packets from the set S1 mixed on a proportion equal
to their initial proportion of their sizes (fair mixing property).
Round 2: It lasts rsj steps. Adversary’s behavior: The adversary injects a set
Y of |Y | = r2sj packets in queue f ′

4 requiring to traverse the edges f
′
4, f

′
6, e0, f4,

f6, e1, f
′
1, f

′
3, f

′
5. At the same time, the adversary injects a set S2 of |S2| = r2sj

packets in f2 wanting to traverse f2, a set S3 of |S3| = r2sj packets in f3 wanting
to traverse f3, and a set S4 of |S4| = r2sj packets in f5 wanting to traverse f5.

At the end of this round all the packets of the set Y are queued in queue
e0. Also, a set Xrem,f2 of |Xrem,f2 | = r2sj

r+1 packets from the set X and a set

S2,rem,f2 of |S2,rem,f2 | = r3sj

r+1 packets from the set S2 remain in queue f2
mixed on a proportion equal to their initial proportion of their sizes. Further-
more a set Xrem,f3 of |Xrem,f3 | = r3sj+rsj

(r+1)(r2+r+2) packets from the set X, a set

Srem,f3 of |Srem,f3 | = r3sj+rsj

(r+1)(r2+r+2) packets from the set S and a set S3,rem of

|S3,rem| = r4sj+r2sj

r2+r+2 packets from the set S3 remain in queue f3 mixed on the
proportion of the sizes with which they arrive in queue f3 during this round.
Finally, r4sj+r2sj

(r2+r+2)(r3+r2+2r+2) packets from the set X,
r4sj+r2sj

(r2+r+2)(r3+r2+2r+2) pack-

ets from the set S, and r5sj+r3sj

r3+r2+2r+2 packets from the set S4 remain in queue f5
mixed on the proportion of the sizes with which they arrive in queue f3 during
this round.
Round 3: It lasts r2sj time steps. Adversary’s behavior: During this round the
adversary injects a set S5 of |S5| = r3sj packets in queue f4 requiring to traverse
the edge f4 and a set Z of |Z| = r3sj packets in queue f6 requiring to traverse
the edges f6, e1, f

′
1, f

′
3, f

′
5.

At the end of this round a set Yrem of |Yrem| = r3sj

r+1 packets from the set Y and

a set S5,rem of |S5,rem| = r4sj

r+1 packets from the set S5 remain in queue f4 mixed
on a proportion equal to their initial proportion of their sizes. Furthermore, a
set Yrem,f6 of |Yrem,f6 | = r4sj

(r+1)(r2+r+1) packets from the set Y and a set Zrem,f6

of |Zrem,f6 | = r5sj

r2+r+1 packets from the set Z are queued in queue f6 mix on the
proportion of the sizes with which they arrive in queue f6 during this round.
The total number of packets in queue f3 at the beginning of round 3 is

|T1| = |Xrem,f3 |+ |Srem,f3 |+ |S3,rem| = (r5 + r4 + 3r3 + r2 + 2r)sj
(r + 1)(r2 + r + 2)

(2)
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However, |T1| ≥ r2sj , ∀r. Thus, a number of Xrem,f3 , Srem,f3 , S3,rem packets will
remain in queue f3 at the end of round 3. This number is |T2| = (2r−r2−r4)sj

(r+1)(r2+r+2) .

From this number |S3,rem,f3 | = (2r2−r3−r5)sj

(r2+r+2)2 packets belong to the set S3. In
addition, the total number of packets that are in f2 at the end of round 2 is
|T3| = r2sj that is equal to the round’s time duration. Thus, all the packets that
belong to the set X and were in f2 at the end of round 2 (|Xrem,f2 |) traverse
now f2 and arrive to f3 where they are blocked.
In order to have instability the number of packets that are queued in f3, f4, f5,

f6, e1 requiring to traverse the edges e1, f
′
1, f

′
3, f

′
5 at the end of this round, sj+1,

should be more than the initial sj packets that were queued in the system in
corresponding queues at the beginning of round 1. Therefore, it should hold

|Z|+ |Y |+ |Xrem,f2 |+ |Xrem,f3 |+ |Xpass,f3 | − |Tround3 | > sj (3)

Substituting in (3), we take

r3sj +
r2sj
r + 1

+
r3sj + rsj

(r + 1)(r2 + r + 2)
+

r4sj + r2sj
(r2 + r + 2)(r3 + r2 + 2r + 2)

> sj (4)

This holds for r ≥ 0.749. Now in order to conclude the proof we prove:

Lemma 3. For r ≥ 0.686, the number of packets that remain in queues f3, f5
(Q(f3), Q(f5)) at the end of round 3 is less than or equal to the number of packets
that remain in queues f4, f6 at the end of round 3 (Q(f4), Q(f6)).

Notice that we have, till now, managed to reproduce the induction hypothesis
in queues f3, f5, f4, f6, e1 but with some packet flows (in particular in queues
f4, f3, f5) having empty spaces (packets that don’t want to traverse the edges
e1, f

′
1, f

′
3, f

′
5). In order for the induction step to work we must show that all

the packets in these queues will manage to depart to the symmetric part of the
network (f

′
1, f

′
3, f

′
5) in sj+1 time steps as a continuous flow. As we have shown

above all the packets that are queued in queue e1 want to traverse the edges
e1, f

′
1, f

′
3, f

′
5 and their flow is continuous without empty spaces (packets that do

not want to traverse the edges e1, f
′
1, f

′
3, f

′
5). Also, from Lemma 3, the number

of packets in queues f4, f6 is bigger than the number of packets in queues f3, f5.
Furthermore, the packets that are queued in queue f6 can be seen as a continuous
flow that wants to traverse the edges e1, f

′
1, f

′
3, f

′
5, while the set of packets in

queue f4 consists of packets that want to traverse the edges e1, f
′
1, f

′
3, f

′
5 (Yrem)

and packets that are injections which require to traverse a single edge (S5,rem),
which can be considered as empty spaces. Because of that we should show that
all the Yrem packets manage to leave the edge f4 during the sj+1 time steps. We
formally establish:

Lemma 4. For any injection rate r, all the Yrem packets manage to leave the
edge f4 during sj+1 time steps.

We have so far established two sufficient constraints on r for instability, namely
that r ≥ 0.749 and r ≥ 0.686. Clearly, taking r ≥ max{0.749, 0.686} = 0.749
suffices for instability of the network N in the constructed execution. This con-
cludes our proof. 	
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6 Discussion and Directions for Further Research

Our work opens up the study of the stability and instability properties of hetero-
geneous communication networks with multiple contention-resolution protocols
running on top of them. A fundamental question that arises in this setting is
whether there exists a structural explanation of the differences we have observed
regarding the stability of different compositions of universally stable protocols.
Is there any deep reason for the composition of LIS with another contention-
resolution protocol to be unstable? Also, for the unstable compositions of pairs
of protocols, can we characterize the graphs on which the composition is un-
stable? A corresponding characterization for networks on which a single greedy
protocol is running (as opposed to a composition of greedy protocols) in terms
of graph minors has been developed in [1, Section 3.2].
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