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The expanding gap between microprocessor and DRAM performance has
necessitated the use of increasingly aggressive techniques designed to reduce or
hide the latency of main memory access. Although large cache hierarchies have
proven to be effective in reducing this latency for the most frequently used data, it
is still not uncommon for many programs to spend more than half their run times
stalled on memory requests. Data prefetching has been proposed as a technique for
hiding the access latency of data referencing patterns that defeat caching
strategies. Rather than waiting for a cache miss to initiate a memory fetch, data
prefetching anticipates such misses and issues a fetch to the memory system in
advance of the actual memory reference. To be effective, prefetching must be
implemented in such a way that prefetches are timely, useful, and introduce little
overhead. Secondary effects such as cache pollution and increased memory
bandwidth requirements must also be taken into consideration. Despite these
obstacles, prefetching has the potential to significantly improve overall program
execution time by overlapping computation with memory accesses. Prefetching
strategies are diverse, and no single strategy has yet been proposed that provides
optimal performance. The following survey examines several alternative
approaches, and discusses the design tradeoffs involved when implementing a data
prefetch strategy.
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1. INTRODUCTION

By any metric, microprocessor perfor-
mance has increased at a dramatic rate
over the past decade. This trend has
been sustained by continued architec-
tural innovations and advances in mi-
croprocessor fabrication technology. In
contrast, main memory dynamic RAM
(DRAM) performance has increased at a
much more leisurely rate, as shown in
Figure 1.

Chief among latency reducing tech-
niques is the use of cache memory hier-
archies [Smith 1982]. The static RAM
(SRAM) memories used in caches have
managed to keep pace with processor
memory request rates but continue to
be too expensive for a main store tech-
nology. Although the use of large cache
hierarchies has proven to be effective in
reducing the average memory access
penalty for programs that show a high
degree of locality in their addressing
patterns, it is still not uncommon for
scientific and other data-intensive pro-
grams to spend more than half their run
times stalled on memory requests
[Mowry et al. 1992]. The large, dense
matrix operations that form the basis of
many such applications typically exhibit
little data reuse and thus may defeat
caching strategies.

The poor cache utilization of these
applications is partially a result of the
“on demand” memory fetch policy of
most caches. This policy fetches data
into the cache from main memory only
after the processor has requested a
word and found it absent from the
cache. The situation is illustrated in

Figure 2(a) where computation, includ-
ing memory references satisfied within
the cache hierarchy, are represented by
the upper time line while main memory
access time is represented by the lower
time line. In this figure, the data blocks
associated with memory references r1,
r2, and r3 are not found in the cache
hierarchy and must therefore be fetched
from main memory. Assuming a simple,
in-order execution unit, the processor
will be stalled while it waits for the
corresponding cache block to be fetched.
Once the data returns from main mem-
ory it is cached and forwarded to the
processor where computation may again
proceed.

Note that this fetch policy will always
result in a cache miss for the first ac-
cess to a cache block, since only previ-
ously accessed data are stored in the
cache. Such cache misses are known as
cold start or compulsory misses. Also, if
the referenced data is part of a large
array operation, it is likely that the
data will be replaced after its use to
make room for new array elements be-
ing streamed into the cache. When the
same data block is needed later, the
processor must again bring it in from
main memory, incurring the full main
memory access latency. This is called a
capacity miss.

Many of these cache misses can be
avoided if we augment the demand fetch
policy of the cache with a data prefetch
operation. Rather than waiting for a
cache miss to perform a memory fetch,
data prefetching anticipates such
misses and issues a fetch to the memory
system in advance of the actual memory
reference. This prefetch proceeds in par-
allel with processor computation, allow-
ing the memory system time to transfer
the desired data from main memory to
the cache. Ideally, the prefetch will com-
plete just in time for the processor to
access the needed data in the cache
without stalling the processor.

An increasingly common mechanism
for initiating a data prefetch is an ex-
plicit fetch instruction issued by the
processor. At a minimum, a fetch specifies
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the address of a data word to be brought
into cache space. When the fetch in-

struction is executed, this address is
simply passed on to the memory system
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Figure 1. System and DRAM performance since 1988. System performance is measured by SPECfp92
and DRAM performance by row access times. All values are normalized to their 1988 equivalents
(Source: Internet SPECtable, ftp://ftp.cs.toronto.edu/pub/jdd/spectable).
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Figure 2. Execution diagram assuming (a) no prefetching, (b) perfect prefetching, and (c) degraded
prefetching.
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without forcing the processor to wait for
a response. The cache responds to the
fetch in a manner similar to an ordi-
nary load instruction, with the excep-
tion that the referenced word is not
forwarded to the processor after it has
been cached. Figure 2(b) shows how
prefetching can be used to improve the
execution time of the demand fetch case
given in Figure 2(a). Here, the latency
of main memory accesses is hidden by
overlapping computation with memory
accesses, resulting in a reduction in
overall run time. This figure represents
the ideal case when prefetched data ar-
rives just as it is requested by the pro-
cessor.

A less optimistic situation is depicted
in Figure 2(c). In this figure, the
prefetches for references r1 and r2 are
issued too late to avoid processor stalls,
although the data for r2 is fetched early
enough to realize some benefit. Note
that the data for r3 arrives early
enough to hide all of the memory la-
tency, but must be held in the processor
cache for some period of time before it is
used by the processor. During this time,
the prefetched data are exposed to the
cache replacement policy, and may be
evicted from the cache before use. When
this occurs, the prefetch is said to be
useless because no performance benefit
is derived from fetching the block early.

A prematurely prefetched block may
also displace data in the cache that is
currently in use by the processor, re-
sulting in what is known as cache pollu-
tion [Casmira and Kaeli 1995]. Note
that this effect should be distinguished
from normal cache replacement misses.
A prefetch that causes a miss in the

cache that would not have occurred if
prefetching was not in use is defined as
cache pollution. If, however, a
prefetched block displaces a cache block
which is referenced after the prefetched
block has been used, this is an ordinary
replacement miss since the resulting
cache miss would have occurred with or
without prefetching.

A more subtle side effect of prefetch-
ing occurs in the memory system. Note
that in Figure 2(a) the three memory
requests occur within the first 31 time
units of program startup, whereas in
Figure 2(b), these requests are com-
pressed into a period of 19 time units.
By removing processor stall cycles,
prefetching effectively increases the fre-
quency of memory requests issued by
the processor. Memory systems must be
designed to match this higher band-
width to avoid becoming saturated and
nullifying the benefits of prefetching
[Burger 1997]. This can be particularly
true for multiprocessors where bus uti-
lization is typically higher than single
processor systems.

It is also interesting to note that soft-
ware prefetching can achieve a reduc-
tion in run time despite adding instruc-
tions into the execution stream. In
Figure 3, the memory effects from Fig-
ure 2 are ignored and only the computa-
tional components of the run time are
shown. Here, it can be seen that the
three prefetch instructions actually in-
crease the amount of work done by the
processor.

Several hardware-based prefetching
techniques have also been proposed that
do not require the use of explicit fetch
instructions. These techniques employ

r1 r2 r3

r1 r2 r3

Prefetch Overhead

No Prefetching

Prefetching

Figure 3. Software prefetching overhead.
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special hardware that monitors the pro-
cessor in an attempt to infer prefetching
opportunities. Although hardware
prefetching incurs no instruction over-
head, it often generates more unneces-
sary prefetches than software prefetch-
ing. Unnecessary prefetches are more
common in hardware schemes because
they speculate on future memory ac-
cesses without the benefit of compile-
time information. If this speculation is
incorrect, cache blocks that are not ac-
tually needed will be brought into the
cache. Although unnecessary prefetches
do not affect correct program behavior,
they can result in cache pollution, and
will consume memory bandwidth.

To be effective, data prefetching must
be implemented in such a way that
prefetches are timely, useful, and intro-
duce little overhead. Secondary effects
in the memory system must also be
taken into consideration when design-
ing a system that employs a prefetch
strategy. Despite these obstacles, data
prefetching has the potential to signifi-
cantly improve overall program execu-
tion time by overlapping computation
with memory accesses. Prefetching
strategies are diverse; no single strat-
egy that provides optimal performance
has yet been proposed. In the following
sections, alternative approaches to
prefetching will be examined by com-
paring their relative strengths and
weaknesses.

2. BACKGROUND

Prefetching, in some form, has existed
since the mid-1960’s. Early studies of
cache design [Anacker and Wang 1967]
recognized the benefits of fetching mul-
tiple words from main memory into the
cache. In effect, such block memory
transfers prefetch the words surround-
ing the current reference in hope of
taking advantage of the spatial locality
of memory references. Hardware
prefetching of separate cache blocks was
later implemented in the IBM 370/168
and Amdahl 470V [Smith 1978]. Soft-
ware techniques are more recent. Smith

first alluded to this idea in his survey of
cache memories [Smith 1982], but at
that time doubted its usefulness. Later,
Porterfield [1989] proposed the idea of a
“cache load instruction” at approxi-
mately the same time that Motorola in-
troduced the “touch load’ instruction in
the 88110, and Intel proposed the use of
“dummy read” operations in the i486
[Fu et al. 1989]. Today, nearly all micro-
processor ISAs contain explicit instruc-
tions designed to bring data into the
processor cache hierarchy.

It should be noted that prefetching is
not restricted to fetching data from
main memory into a processor cache.
Rather, it is a generally applicable tech-
nique for moving memory objects up in
the memory hierarchy before they are
actually needed by the processor.
Prefetching mechanisms for instruc-
tions and file systems are commonly
used to prevent processor stalls; for ex-
ample, see Young and Shekita [1993], or
Patterson and Gibson [1994]. For brev-
ity, only techniques that apply to data
objects residing in memory will be con-
sidered here.

Nonblocking load instructions share
many similarities with data prefetch-
ing. Like prefetches, these instructions
are issued in advance of the data’s ac-
tual use to take advantage of the paral-
lelism between the processor and mem-
ory subsystem. Rather than loading
data into the cache, however, the speci-
fied word is placed directly into a pro-
cessor register. Nonblocking loads are
an example of a binding prefetch, so
named because the value of the
prefetched variable is bound to a named
location (a processor register, in this
case) at the time the prefetch is issued.
Although nonblocking loads are not dis-
cussed further here, other forms of bind-
ing prefetches are examined.

Data prefetching has received consid-
erable attention in the literature as a
potential means of boosting perfor-
mance in multiprocessor systems. This
interest stems from a desire to reduce
the particularly high memory latencies
often found in such systems. Memory
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delays tend to be high in multiproces-
sors due to added contention for shared
resources such as a shared bus and
memory modules in a symmetric multi-
processor. Memory delays are even
more pronounced in distributed-memory
multiprocessors, where memory re-
quests may need to be satisfied across
an interconnection network. By masking
some or all of these significant memory
latencies, prefetching can be an effec-
tive means of speeding up multiproces-
sor applications.

Due to this emphasis on prefetching
in multiprocessor systems, many of the
prefetching mechanisms discussed be-
low have been studied either mostly or
exclusively in this context. Because sev-
eral of these mechanisms may also be
effective in single processor systems,
multiprocessor prefetching is treated as
a separate topic only when the prefetch
mechanism is inherent in such systems.

3. SOFTWARE DATA PREFETCHING

Most contemporary microprocessors
support some form of fetch instruction
that can be used to implement prefetch-
ing [Bernstein et al. 1995; Santhanam
et al. 1997; Yeager 1996]. The Imple-
mentaation of a fetch can be as simple
as a load into a processor register that
has been hardwired to zero. Slightly
more sophisticated implementations
provide hints to the memory system as
to how the prefetched block will be
used. Such information may be useful in
multiprocessors where data can be
prefetched in different sharing states,
for example.

Although particular implementations
will vary, all fetch instructions share
some common characteristics. Fetches
are nonblocking memory operations and
therefore require a lockup-free cache
[Kroft 1981] that allows prefetches to
bypass other outstanding memory oper-
ations in the cache. Prefetches are typi-
cally implemented in such a way that
fetch instructions cannot cause excep-
tions. Exceptions are suppressed for
prefetches to insure that they remain

an optional optimization feature that
does not affect program correctness or
initiate large and potentially unneces-
sary overhead, such as page faults or
other memory exceptions.

The hardware required to implement
software prefetching is modest com-
pared to other prefetching strategies.
Most of the complexity of this approach
lies in the judicious placement of fetch
instructions within the target applica-
tion. The task of choosing where in the
program to place a fetch instruction rel-
ative to the matching load or store in-
struction is known as prefetch scheduling.

In practice, it is not possible to pre-
cisely predict when to schedule a
prefetch so that data arrives in the
cache at the moment it will be re-
quested by the processor, as was the
case in Figure 2(b). The execution time
between the prefetch and the matching
memory reference may vary, as will
memory latencies. These uncertainties
are not predictable at compile time, and
therefore require careful consideration
when scheduling prefetch instructions
in a program.

Fetch instructions may be added by
the programmer or by the compiler dur-
ing an optimization pass. Unlike many
optimizations that occur too frequently
in a program or are too tedious to imple-
ment by hand, prefetch scheduling can
often be done effectively by the pro-
grammer. Studies indicate that adding
just a few prefetch directives to a pro-
gram can substantially improve perfor-
mance [Mowry and Gupta 1991]. How-
ever, if programming effort is to be kept
at a minimum, or if the program con-
tains many prefetching opportunities,
compiler support may be required.

Whether hand-coded or automated by
a compiler, prefetching is most often
used within loops responsible for large
array calculations. Such loops provide
excellent prefetching opportunities be-
cause they are common in scientific codes,
exhibit poor cache utilization, and often
have predictable array referencing pat-
terns. By establishing these patterns at
compile-time, fetch instructions can be
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placed inside loop bodies so that data
for a future loop iteration can be
prefetched during the current iteration.

As an example of how loop-based
prefetching may be used, consider the
code segment shown in Figure 4(a). This
loop calculates the inner product of two
vectors, a and b, in a manner similar to
the innermost loop of a matrix multipli-
cation calculation. If we assume a four-
word cache block, this code segment will
cause a cache miss every fourth itera-
tion. We can attempt to avoid these
cache misses by adding the prefetch di-
rectives shown in Figure 4(b). Note that
this figure is a source code representa-
tion of the assembly code that would be
generated by the compiler.

This simple approach to prefetching
suffers from several problems. First, we
need not prefetch every iteration of this
loop, since each fetch actually brings
four words (one cache block) into the
cache. Although the extra prefetch oper-
ations are not illegal, they are unneces-
sary and will degrade performance. As-
suming a and b are cache-block-aligned,
prefetching should be done only on ev-
ery fourth iteration. One solution to this
problem is to surround the fetch direc-
tives with an if condition that tests
when i modulo 4 5 0 is true. The
overhead of such an explicit prefetch
predicate, however, would likely offset
the benefits of prefetching, and there-
fore should be avoided. A better solution
is to unroll the loop by a factor of r,
where r is equal to the number of words
to be prefetched per cache block. As
shown in Figure 4(c), unrolling a loop
involves replicating the loop body r
times and increasing the loop stride to
r. Note that the fetch directives are
not replicated and the index value used
to calculate the prefetch address is
changed from i 1 1 to i 1 r.

The code segment given in Figure 4(c)
removes most cache misses and unnec-
essary prefetches, but further improve-
ments are possible. Note that cache
misses will occur during the first itera-

tion of the loop, since prefetches are
never issued for the initial iteration.
Unnecessary prefetches will occur in the
last iteration of the unrolled loop where
the fetch commands attempt to access
data past the loop index boundary. Both
of the above problems can be remedied
by using software pipelining techniques
as shown in Figure 4(d). In this figure,

for (i = 0; i < N; i++)
ip = ip + a[i]*b[i];

for (i = 0; i < N; i++){
fetch( &a[i+1]);
fetch( &b[i+1]);
ip = ip + a[i]*b[i];

}

for (i = 0; i < N; i+=4){
fetch( &a[i+4]);
fetch( &b[i+4]);
ip = ip + a[i]*b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}

fetch( &ip);
fetch( &a[0]);
fetch( &b[0]);

for (i = 0; i < N-4; i+=4){
fetch( &a[i+4]);
fetch( &b[i+4]);
ip = ip + a[i]  *b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}
for ( ; i < N; i++)

ip = ip + a[i]*b[i];

(a)

(b)

(c)

(d)

Figure 4. Inner product calculation using (a) no
prefetching, (b) simple prefetching, (c) prefetching
with loop unrolling, and (d) software pipelining.
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we extracted select code segments out of
the loop body and placed them on either
side of the original loop. Fetch state-
ments have been prepended to the main
loop to prefetch data for the first itera-
tion of the main loop, including ip. This
segment of code is referred to as the
loop prolog. An epilog is added to the
end of the main loop to execute the final
inner product computations without ini-
tiating any unnecessary prefetch in-
structions.

The code given in Figure 4 is said to
cover all loop references because each
reference is preceded by a matching
prefetch. However, one final refinement
may be necessary to make these
prefetches effective. The examples in
Figure 4 were written with the implicit
assumption that prefetching one itera-
tion ahead of the data’s actual use is
sufficient to hide the latency of main
memory accesses. This may not be the
case. Although early studies [Callahan
et al. 1991] were based on this assump-
tion, Klaiber and Levy [1991] recog-
nized that this was not a sufficiently
general solution. When loops contain
small computational bodies, it may be
necessary to initiate prefetches

d 5 l

s

where l is the average memory latency
measured in processor cycles and s is
the estimated cycle time of the shortest
possible execution path through one
loop iteration, including the prefetch
overhead. By choosing the shortest exe-
cution path through one loop iteration
and using the ceiling operator, this cal-
culation is designed to err on the con-
servative side, and thus increase the
likelihood that prefetched data will be
cached before it is requested by the pro-
cessor.

Returning to the main loop in Figure
4(d), let us assume an average miss
latency of 100 processor cycles and a
loop iteration time of 45 cycles so that
the final inner product loop transforma-
tion is as shown in Figure 5.

The loop transformations outlined
above are fairly mechanical and, with
some refinements, can be applied recur-
sively to nested loops. Sophisticated
compiler algorithms based on this ap-
proach have been developed, with vary-
ing degrees of success, to automatically
add fetch instructions during an opti-
mization pass of a compiler [Mowry et
al. 1992]. Bernstein et al. [1995] mea-
sured the run-times of 12 scientific bench-
marks both with and without the use of
prefetching on a PowerPC 601-based
system. Prefetching typically improved

fetch( &ip);
for (i = 0; i < 12; i += 4){

fetch( &a[i]);
fetch( &b[i]);

}
for (i = 0; i < N-12; i += 4){

fetch( &a[i+12]);
fetch( &b[i+12]);
ip = ip + a[i]  *b[i];
ip = ip + a[i+1]*b[i+1];
ip = ip + a[i+2]*b[i+2];
ip = ip + a[i+3]*b[i+3];

}
for ( ; i < N; i++)

ip = ip + a[i]*b[i];

prolog -prefetching only

main loop -prefetching
and computation

epilog - computation only

Figure 5. Final inner product loop transformation.
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run-times by less than 12%, although
one benchmark ran 22% faster and
three others actually ran slightly slower
due to prefetch instruction overhead.
Santhanam et al. [Kroft 1981] found
that six of the ten SPECfp95 benchmark
programs ran between 26% and 98%
faster on a PA8000-based system when
prefetching was enabled. Three of the
four remaining SPECfp95 programs
showed less than a 7% improvement in
run-time and one program was slowed
down by 12%.

Because a compiler must be able to
reliably predict memory access pat-
terns, prefetching is normally restricted
to loops containing array accesses
whose indices are linear functions of the
loop indices. Such loops are relatively
common in scientific codes, but far less
so in general applications. Attempts at
establishing similar software prefetch-
ing strategies for these applications are
hampered by their irregular referencing
patterns [Chen et al. 1991; Lipasti et al.
1995; Luk and Mowry 1996]. Given the
complex control structures typical of
general applications, there is often a
limited window in which to reliably pre-
dict when a particular datum will be
accessed. Moreover, once a cache block
has been accessed, there is less of a
chance that several successive cache
blocks will also be requested when data
structures such as graphs and linked
lists are used. Finally, the compara-
tively high temporal locality of many
general applications often result in high
cache utilization, thereby diminishing
the benefit of prefetching.

Even when restricted to well-con-
formed looping structures, the use of
explicit fetch instructions exacts a per-
formance penalty that must be consid-
ered when using software prefetching.
Fetch instructions add processor over-
head not only because they require ex-
tra execution cycles, but also because
the fetch source addresses must be
calculated and stored in the processor.
Ideally, this prefetch address should be
retained so that it need not be recalcu-
lated for the matching load or store

instruction. By allocating and retaining
register space for the prefetch ad-
dresses, however, the compiler will have
less register space to allocate to other
active variables. The addition of fetch
instructions is therefore said to increase
register pressure which, in turn, may
result in additional spill code to manage
variables “spilled” out to memory due to
insufficient register space. The problem
is exacerbated when prefetch distance is
greater than one, since this implies ei-
ther maintaining d address registers to
hold multiple prefetch addresses or
storing these addresses in memory if
the required number of registers is not
available.

Comparing the transformed loop in
Figure 5 to the original loop, it can be
seen that software prefetching also re-
sults in significant code expansion
which, in turn, may degrade instruction
cache performance. Finally, because
software prefetching is done statically,
it is unable to detect when a prefetched
block has been prematurely evicted and
needs to be refetched.

4. HARDWARE DATA PREFETCHING

Several hardware prefetching schemes
have been proposed that add prefetch-
ing capabilities to a system without the
need for programmer or compiler inter-
vention. No changes to existing ex-
ecutables are necessary, so instruction
overhead is completely eliminated.
Hardware prefetching can also take ad-
vantage of run-time information to po-
tentially make prefetching more effec-
tive.

4.1 Sequential Prefetching

Most (but not all) prefetching schemes
are designed to fetch data from main
memory into the processor cache in
units of cache blocks. It should be noted,
however, that multiple word cache
blocks are themselves a form of data
prefetching. By grouping consecutive
memory words into single units, caches
exploit the principle of spatial locality
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to implicitly prefetch data that is likely
to be referenced in the near future.

The degree to which large cache
blocks can be effective in prefetching
data is limited by the ensuing cache
pollution effects. That is, as the cache
block size increases, so does the amount
of potentially useful data displaced from
the cache to make room for the new
block. In shared-memory multiproces-
sors with private caches, large cache
blocks may also cause false sharing
[Lilja 1993], which occurs when two or
more processors wish to access different
words within the same cache block and
at least one of the accesses is a store.
Although the accesses are logically ap-
plied to separate words, the cache hard-
ware is unable to make this distinction
because it operates on whole cache
blocks only. Hence the accesses are
treated as operations applied to a single
object, and cache coherence traffic is
generated to ensure that the changes
made to a block by a store operation are
seen by all processors caching the block.
In the case of false sharing, this traffic
is unnecessary because only the proces-
sor executing the store references the
word being written. Increasing the
cache block size increases the likelihood
of two processors sharing data from the
same block, and hence false sharing is
more likely to arise.

Sequential prefetching can take ad-
vantage of spatial locality without intro-
ducing some of the problems associated
with large cache blocks. The simplest
sequential prefetching schemes are
variations upon the one block lookahead
(OBL) approach, which initiates a
prefetch for block b 1 1 when block b is
accessed. This differs from simply dou-
bling the block size, in that the
prefetched blocks are treated separately
with regard to cache replacement and
coherence policies. For example, a large
block may contain one word that is fre-
quently referenced and several other
words that are not in use. Assuming an
LRU replacement policy, the entire
block will be retained, even though only

a portion of the block’s data is actually
in use. If this large block is replaced
with two smaller blocks, one of them
could be evicted to make room for more
active data. Similarly, the use of
smaller cache blocks reduces the proba-
bility that false sharing will occur.

OBL implementations differ depend-
ing on what type of access to block b
initiates the prefetch of b 1 1. Smith
[1982] summarizes several of these ap-
proaches, of which the prefetch-on-miss
and tagged prefetch algorithms will be
discussed here. The prefetch-on-miss al-
gorithm simply initiates a prefetch for
block b 1 1 whenever an access for
block b results in a cache miss. If b 1 1
is already cached, no memory access is
initiated. The tagged prefetch algorithm
associates a tag bit with every memory
block. This bit is used to detect when a
block is demand-fetched or a prefetched
block is referenced for the first time. In
either of these cases, the next sequen-
tial block is fetched.

Smith found that tagged prefetching
reduces cache miss ratios in a unified
(both instruction and data) cache by
between 50% and 90% for a set of trace-
driven simulations. Prefetch-on-miss
was less than half as effective as tagged
prefetching in reducing miss ratios. The
reason prefetch-on-miss is less effective
is illustrated in Figure 6 where the be-
havior of each algorithm when accessing
three contiguous blocks is shown. Here,
it can be seen that a strictly sequential
access pattern will result in a cache
miss for every other cache block when
the prefetch-on-miss algorithm is used
but this same access pattern results in
only one cache miss when employing a
tagged prefetch algorithm.

The HP PA7200 [Chan et al. 1996]
serves as an example of a contemporary
microprocessor that uses OBL prefetch
hardware. The PA7200 implements a
tagged prefetch scheme using either a
directed or an undirected mode. In the
undirected mode, the next sequential line
is prefetched. In the directed mode, the
prefetch direction (forward or backward)
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and distance can be determined by the
pre/post-increment amount encoded in
the load or store instructions. That is,
when the contents of an address regis-
ter are auto-incremented, the cache
block associated with a new address is
prefetched. Compared to a base case
with no prefetching, the PA7200
achieved run-time improvements in the
range of 0% to 80% for 10 SPECfp95
benchmark programs [VanderWiel et al.
1997]. Although performance was found
to be application-dependent, all but two
of the programs ran more than 20%
faster when prefetching was enabled.

Note that one shortcoming of the OBL
schemes is that the prefetch may not be
initiated far enough in advance of the
actual use to avoid a processor memory

stall. A sequential access stream result-
ing from a tight loop, for example, may
not allow sufficient lead time between
the use of block b and the request for
block b 1 1. To solve this problem, it is
possible to increase the number of
blocks prefetched after a demand fetch

from one to K, where K is known as the
degree of prefetching. Prefetching K . 1
subsequent blocks aids the memory sys-
tem in staying ahead of rapid processor
requests for sequential data blocks. As
each prefetched block b, is accessed for
the first time, the cache is interrogated
to check if blocks b 1 1, . . . , b 1 K,
are present in the cache and, if not, the
missing blocks are fetched from memory.

demand-fetched

prefetched

demand-fetched

prefetched

demand-fetched

prefetched

demand-fetched

prefetched

0 demand-fetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched0

0 demand-fetched

0 prefetched

1 prefetched

0 prefetched

0 0

0 demand-fetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched

0 demand-fetched

0 prefetched

1 prefetched

0 prefetched

0

1 prefetched

0 0

1 prefetched

1 prefetched

0 0 0

(c)

(a)

(b)

Figure 6. Three forms of sequential prefetching: (a) Prefetch on miss, (b) tagged prefetch, and (c)
sequential prefetching with K 5 2.
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Note that when K 5 1, this scheme is
identical to tagged OBL prefetching.

Although increasing the degree of
prefetching reduces miss rates in sec-
tions of code that show a high degree of
spatial locality, additional traffic and
cache pollution are generated by se-
quential prefetching during program
phases that show little spatial locality.
Przybylski [1990] found that this over-
head tends to make sequential prefetch-
ing unfeasible for values of K larger
than one.

Dahlgren et al. [1993] proposed an
adaptive sequential prefetching policy
that allows the value of K to vary dur-
ing program execution in such a way
that K is matched to the degree of spa-
tial locality exhibited by the program at
a particular point in time. To do this, a
prefetch efficiency metric is periodically
calculated by the cache as an indication
of the current spatial locality character-
istics of the program. Prefetch efficiency
is defined to be the ratio of useful
prefetches to total prefetches where a
useful prefetch occurs whenever a
prefetched block results in a cache hit.
The value of K is initialized to one,
incremented whenever the prefetch effi-
ciency exceeds a predetermined upper
threshold, and decremented whenever
the efficiency drops below a lower
threshold, as shown in Figure 7. Note
that if K is reduced to zero, prefetching

is effectively disabled. At this point, the
prefetch hardware begins to monitor
how often a cache miss to block b occurs
while block b 2 1 is cached, and re-
starts prefetching if the respective ratio
of these two numbers exceeds the lower
threshold of the prefetch efficiency.

Simulations of a shared memory mul-
tiprocessor found that adaptive
prefetching could achieve appreciable
reductions in cache miss ratios over
tagged prefetching. However, simulated
run-time comparisons show only slight
differences between the two schemes.
The lower miss ratio of adaptive se-
quential prefetching was partially nulli-
fied by the associated overhead of in-
creased memory traffic and contention.

Jouppi [1990] proposed an approach
where K prefetched blocks are brought
into a FIFO stream buffer before being
brought into the cache. As each buffer
entry is referenced, it is brought into
the cache while the remaining blocks
are moved up in the queue and a new
block is prefetched into the tail position.
Note that since prefetched data are not
placed directly into the cache, this
scheme avoids any cache pollution.
However, if a miss occurs in the cache
and the desired block is also not found
at the head of the stream buffer, the
buffer is flushed. Therefore, prefetched
blocks must be accessed in the order
they are brought into the buffer for

K--

K++

time

upper threshold

lower threshold

prefetch
efficiency

Figure 7. Sequential adaptive prefetching.
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stream buffers to provide a performance
benefit.

Palacharla and Kessler [1994] studied
stream buffers as a cost-effective alter-
native to large secondary caches. When
a primary cache miss occurs, one of
several stream buffers is allocated to
service the new reference stream.
Stream buffers are allocated in LRU
order and a newly allocated buffer im-
mediately fetches the next K blocks fol-
lowing the missed block into the buffer.
Palacharla and Kessler found that eight
stream buffers and K 5 2 provided ad-
equate performance in their simulation
study. With these parameters, stream
buffer hit rates (the percentage of pri-
mary cache misses that are satisfied by
the stream buffers) typically fell be-
tween 50% and 90%.

However, memory bandwidth require-
ments were found to increase sharply as
a result of the large number of unneces-
sary prefetches generated by the stream
buffers. To help mitigate this effect, a
small history buffer is used to record
the most recent primary cache misses.
When this history buffer indicates that
misses have occurred for both block b
and block b 1 1, a stream is allocated
and blocks b 1 2, ..., b 1 K 1 1 are
prefetched into the buffer. Using this
more selective stream allocation policy,
bandwidth requirements were reduced
at the expense of some slightly reduced
stream buffer hit rates. The stream
buffers described by Palacharla and
Kessler were found to provide an eco-
nomical alternative to large secondary
caches, and were eventually incorpo-
rated into the Cray T3E multiprocessor
[Oberlin et al. 1996].

In general, sequential prefetching
techniques require no changes to exist-
ing executables and can be implemented
with relatively simple hardware. How-
ever, compared to software prefetching,
sequential hardware prefetching per-
forms poorly when nonsequential mem-
ory access patterns are encountered.
Scalar references or array accesses with
large strides can result in unnecessary

prefetches because these types of access
patterns do not exhibit the spatial local-
ity upon which sequential prefetching is
based. To enable prefetching of strided
and other irregular data access pat-
terns, several more elaborate hardware
prefetching techniques have been pro-
posed.

4.2 Prefetching with Arbitrary Strides

Several techniques have been proposed
that employ special logic to monitor the
processor’s address referencing pattern
to detect constant stride array refer-
ences originating from looping struc-
tures [Baer and Chen 1991; Fu et al.
1992; Sklenar 1992]. This is accom-
plished by comparing successive ad-
dresses used by load or store instruc-
tions. Chen and Baer’s [1995] technique
is perhaps the most aggressive proposed
thus far. To illustrate its design, as-
sume a memory instruction, mi, refer-
ences addresses a1, a2, and a3 during
three successive loop iterations.
Prefetching for mi will be initiated if

~a2 2 a1! 5 D Þ 0

where D is now assumed to be the stride
of a series of array accesses. The first
prefetch address will then be A3 5 a2

1 D where A3 is the predicted value of
the observed address a3. Prefetching
continues in this way until An Þ an.

Note that this approach requires the
previous address used by a memory in-
struction to be stored along with the
last detected stride, if any. Recording
the reference histories of every memory
instruction in the program is clearly
impossible. Instead, a separate cache
called the reference prediction table
(RPT) holds this information for only
the most recently used memory instruc-
tions. The organization of the RPT is
given in Figure 8. Table entries contain
the address of the memory instruction,
the previous address accessed by this
instruction, a stride value for those entries
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that have established a stride, and a
state field that records the entry’s cur-
rent state. The state diagram for RPT
entries is given in Figure 9.

The RPT is indexed by the CPU’s
program counter (PC). When memory
instruction mi is executed for the first
time, an entry for it is made in the RPT
with the state set to initial, signifying
that no prefetching is yet initiated for
this instruction. If mi is executed again
before its RPT entry has been evicted, a
stride value is calculated by subtracting
the previous address stored in the RPT
from the current effective address. To
illustrate the functionality of the RPT,
consider the matrix multiply code and
associated RPT entries given in Figure 10.

In this example, only the load instruc-
tions for arrays a, b and c are consid-
ered, and it is assumed that the arrays
begin at addresses 10000, 20000, and
30000, respectively. For simplicity, one-
word cache blocks are also assumed.

After the first iteration of the innermost
loop, the state of the RPT is as given in
Figure 10(b) where instruction ad-
dresses are represented by their
pseudocode mnemonics. Since the RPT
does not yet contain entries for these
instructions, the stride fields are initial-
ized to zero and each entry is placed in
an initial state. All three references re-
sult in a cache miss.

After the second iteration, strides are
computed as shown in Figure 10(c). The
entries for the array references to b and
c are placed in a transient state because
the newly computed strides do not
match the previous stride. This state
indicates that an instruction’s referenc-
ing pattern may be in transition, and a
tentative prefetch is issued for the block
at address effective address 1 stride if it
is not already cached. The RPT entry for
the reference to array a is placed in a
steady state because the previous and
current strides match. Since this entry’s

instruction tag previous address stride state

PC effective address

prefetch address

Figure 8. State transition graph for reference prediction table entries.
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stride is zero, no prefetching will be
issued for this instruction.

During the third iteration, the entries
for array references b and c move to the
steady state when the tentative strides
computed in the previous iteration are
confirmed. The prefetches issued during
the second iteration result in cache hits
for the b and c references, provided that
a prefetch distance of one is sufficient.

From the above discussion, it can be
seen that the RPT improves upon se-
quential policies by correctly handling
strided array references. However, as
described above, the RPT still limits the
prefetch distance to one loop iteration.
To remedy this shortcoming, a distance
field may be added to the RPT, which
specifies the prefetch distance explic-
itly. Prefetch addresses would then be
calculated as

effective address 1 ~stride 3 distance!

The addition of the distance field re-
quires some method of establishing its
value for a given RPT entry. To calcu-
late an appropriate value, Chen and
Baer decouple the maintenance of the
RPT from its use as a prefetch engine.
The RPT entries are maintained under
the direction of the PC, as described
above, but prefetches are initiated sepa-
rately by a pseudo program counter,
called the lookahead program counter
(LA-PC), which is allowed to precede
the PC. The difference between the PC

and LA-PC is then the prefetch distance
d. Several implementation issues arise
with the addition of the lookahead pro-
gram counter; the interested reader is
referred to Baer and Chen [1991].

Chen and Baer [1994] compared RPT
prefetching to Mowry’s software
prefetching scheme [Mowry et al. 1992],
and found that neither method showed
consistently better performance on a
simulated shared memory multiproces-
sor. Instead, it was found that perfor-
mance depends on the individual pro-
gram characteristics of the four
benchmark programs upon which the
study is based. Software prefetching
was found to be more effective with
certain irregular access patterns for
which an indirect reference is used to
calculate a prefetch address. The RPT
may not be able to establish an access
pattern for an instruction that uses an
indirect address because the instruction
may generate effective addresses that
are not separated by a constant stride.
Also, the RPT is less efficient at the
beginning and end of a loop. Prefetches
are issued by the RPT only after an
access pattern has been established.
This means that no prefetches will be
issued for array data for at least the
first two iterations. Chen and Baer also
note that it may take several iterations
for the RPT to achieve a prefetch dis-
tance that completely masks memory
latency when the LA-PC was used.

initial steady

transient
no

prediction

Correct stride prediction

Incorrect stride prediction

Incorrect prediction with stride update

initial Start state. No prefetching.
transient Stride in transition.  Tentative prefetch.
steady Constant Stride. Prefetch if stride ≠ 0.
no prediction

Stride indeterminate. No prefetching.

Figure 9. The RPT during execution of matrix multiply.
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Finally, the RPT will always prefetch
past array bounds, because an incorrect
prediction is necessary to stop subse-
quent prefetching. However, during loop
steady state, the RPT is able to dynam-
ically adjust its prefetch distance to
achieve a better overlap with memory
latency than the software scheme for
some array access patterns. Also, soft-
ware prefetching incurs instruction
overhead resulting from prefetch ad-
dress calculation, fetch instruction exe-
cution, and spill code.

Dahlgren and Stenstrom [1995] com-
pared tagged and RPT prefetching in
the context of a distributed shared

memory multiprocessor. By examining
the simulated run-time behavior of six
benchmark programs, it was concluded
that RPT prefetching showed limited
performance benefits over tagged
prefetching, which tends to perform as
well or better for the most common
memory access patterns. Dahlgren
showed that most array strides are less
than the block size, and therefore cov-
ered by the tagged prefetch policy. In
addition, it was found that some scalar
references show a limited amount of
spatial locality that could be captured by
the tagged prefetch policy but not by the
RPT mechanism. If memory bandwidth

float a[100][100], b[100][100], c[100][100];

...

for ( i = 0; i < 100; i++)
    for ( j = 0; j < 100; j++)
        for ( k = 0; k < 100; k++)
            a[i][j] += b[i][k] * c[k][j];

(a)

Tag Previous Address Stride State
ld b[i][k] 20,000 0 initial
ld c[k][j] 30,000 0 initial
ld a[i][j] 10,000 0 initial

(b)

Tag Previous Address Stride State
ld b[i][k] 20,004 4 transient
ld c[k][j] 30,400 400 transient
ld a[i][j] 10,000 0 steady

(c)

Tag Previous Address Stride State
ld b[i][k] 20,008 4 steady
ld c[k][j] 30,800 400 steady
ld a[i][j] 10,000 0 steady

(d)
Figure 10. An access to the next field of a list element can prompt prefetching of the subsequent list
element.
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is limited, however, it is conjectured
that the more conservative RPT
prefetching mechanism may be prefera-
ble, since it tends to produce fewer use-
less prefetches.

As with software prefetching, the ma-
jority of hardware prefetching mecha-
nisms focus on very regular array refer-
encing patterns. There are some notable
exceptions, however. For example, Har-
rison and Mehrotra [1994] propose ex-
tensions to the RPT mechanism that
allow for the prefetching of data objects
connected via pointers. This approach
adds fields to the RPT that enable the
detection of indirect reference strides
arising from structures such as linked
lists and sparse matrices.

Another hardware mechanism de-
signed to prefetch data structures con-
nected via pointers was described by
Roth et al. [1998]. Like the RPT and its
derivatives, this scheme uses a hard-
ware table to log the most recently exe-
cuted load instructions. However, this
table is used to detect dependencies be-
tween load instructions rather than es-
tablishing reference patterns for single
instructions. More specifically, this ta-
ble records the data values loaded by
the most recently executed load instruc-
tions and detects instances of these val-
ues being used as base addresses for
subsequent loads. Such address depen-
dencies are common in linked list pro-
cessing, i.e., where the next pointer of
one list element is used as the base
address for the fields of the subsequent
list element, as shown in Figure 11.
Once the hardware table establishes
these dependencies, prefetches are trig-
gered by the execution of those load
instructions that produce base ad-
dresses. For example, once the address
of p- .next is known, p- .next- .

field_1 and p- .next- .field_2 can be
prefetched. A prefetch of p- .next- .next
can be used to initiate further prefetch-
ing. However, it was found that such
aggressive prefetching is generally not
useful because the relatively long pro-
cessing time required for each pointer-
connected element is sufficient to hide
the latency of the prefetches.

Alexander and Kedem [1996] pro-
posed a prefetch mechanism based on
the observation that a cache miss to a
given address tends to be followed by a
miss that belongs to a relatively predict-
able subset of addresses. To take advan-
tage of this property, a hardware table
is used to associate the current cache
miss address with a set of likely succes-
sor cache miss addresses. That is, when
a cache miss occurs, the address of the
missed block is used to index the table
to find the most likely block addresses
for the next cache miss, based on previ-
ous observations. Prefetches are then
issued for these blocks. Rather than
prefetching data into the processor
cache, however, data blocks are
prefetched into SRAM buffers inte-
grated onto the DRAM memory chips.
When a cache miss has been correctly
predicted by the prefetch mechanism,
the corresponding data can be read di-
rectly from the SRAM buffers, thereby
avoiding the relatively time-consuming
DRAM access. Data are not brought into
the processor cache hierarchy because
this scheme prefetches large amounts of
data in order to exploit the high on-chip
bandwidth that exists between the inte-
grated DRAM arrays and SRAM buff-
ers. Alexander and Kedem found that
prefetch units in the range of 8 to 64
cache blocks gave the best performance
for a benchmark suite of scientific and
engineering applications. Prefetching

Next

Field_1

Field_2

Next

Field_1

Field_2

Next

Field_1

Field_2

Next

Field_1

Field_2

P

Figure 11. Block prefetching for a vector-matrix product calculation.
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up to four such units on each cache miss
yields an average prediction accuracy of
88%.

Using a similar approach, Joseph and
Grunwald [1997] studied the use of a
Markov predictor to drive a hardware
data prefetch mechanism. This mecha-
nism attempts to predict when a previ-
ous pattern of misses has begun to re-
peat itself by dynamically recording
sequences of cache miss references in a
hardware table similar to that used in
Alexander and Kedem [1996]. When the
current cache miss address is found in
the table, prefetches for likely subse-
quent misses are issued to a prefetch
request queue. To prevent cache pollu-
tion and wasted memory bandwidth,
prefetch requests may be displaced from
this queue by requests that belong to
reference sequences with a higher prob-
ability of occurring in the near future.
This probability is determined by the
strength of the Markov chain associated
with a given reference.

Rather than triggering data
prefetches on memory instructions,
some researchers [Chang et al. 1994;
Lui and Kaeli 1996] proposed triggering
on branch instructions stored in a
branch target buffer (BTB) [Smith
1981]. When a branch instruction is ex-
ecuted, its entry in the BTB is inspected
to predict not only the branch target
address but also the data that will be
consumed after the predicted branch is
taken. One advantage of this approach
is that several memory operations can
be associated with a single branch tar-
get, thereby reducing the amount of tag
space required to support prefetching.
The entries in the BTB that control
prefetching are similar to the contents
of an RPT entry, with fields for the
previous data address, a stride, and the
state of the entry. These fields are up-
dated in a fashion similar to the RPT if
the branch prediction is correct and the
corresponding memory instructions are
executed. Studies of such branch-pre-
dicted prefetching indicate that no more
than three prefetch entries per BTB en-
try are required to yield close to the

maximum benefit of this approach. Sim-
ulations of a processor using branch-
predicted prefetching with three
prefetch entries per BTB entry found
that miss rates improved by between
11.8% and 63.9% for six SPECint92
benchmarks.

5. INTEGRATING HARDWARE AND
SOFTWARE PREFETCHING

Software prefetching relies exclusively
on compile-time analysis to schedule
fetch instructions within the user pro-
gram. In contrast, the hardware tech-
niques discussed thus far infer prefetch-
ing opportunities at run-time without
any compiler or instruction set support.
Noting that each of these approaches
has its advantages, some researchers
have proposed mechanisms that com-
bine elements of both software and
hardware prefetching.

Gornish and Veidenbaum [1994] de-
scribe a variation on tagged hardware
prefetching in which the degree of
prefetching ~K! for a particular refer-
ence stream is calculated at compile
time and passed on to the prefetch
hardware. To implement this scheme, a
prefetching degree (PD) field is associ-
ated with every cache entry. A special
fetch instruction is provided that
prefetches the specified block into the
cache and then sets the tag bit and the
value of the PD field of the cache entry
holding the prefetched block. The first K
blocks of a sequential reference stream
are prefetched using this instruction.
When a tagged block, b, is demand
fetched, the value in its PD field, Kb, is
added to the block address to calculate a
prefetch address. The PD field of the
newly prefetched block is then set to Kb
and the tag bit is set. This insures that
the appropriate value of K is propagated
through the reference stream. Prefetch-
ing for nonsequential reference patterns
is handled by ordinary fetch instructions.

Zhang and Torrellas [1995] suggest
an integrated technique that enables
prefetching for irregular data struc-
tures. This is accomplished by tagging
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memory locations in such a way that a
reference to one element of a data object
initiates a prefetch of either other ele-
ments within the referenced object or
objects pointed to by the referenced ob-
ject. Both array elements and data
structures connected via pointers can
therefore be prefetched. This approach
relies on the compiler to initialize the
tags in memory, but the actual prefetch-
ing is handled by hardware within the
memory system.

The use of a programmable prefetch
engine was proposed by Chen [1995] as
an extension to the reference prediction
table described in Section 4.2. Chen’s
prefetch engine differs from the RPT in
that the tag, address, and stride infor-
mation are supplied by the program
rather than being dynamically estab-
lished in hardware. Entries are inserted
into the engine by the program before
entering looping structures that can
benefit from prefetching. Once pro-
grammed, the prefetch engine functions
much like the RPT, with prefetches be-
ing initiated when the processor’s pro-
gram counter matches one of the tag
fields in the prefetch engine.

VanderWiel and Lilja [1999] propose
a prefetch engine that is external to the
processor. The engine is a simple pro-
cessor that executes its own program to
prefetch data for the CPU. Through a
shared second-level cache, a producer-
consumer relationship is established in
which the engine prefetches new data
blocks into the cache, but only after
previously prefetched data is accessed
by the processor. The processor also
partially directs the actions of the
prefetch engine by writing control infor-
mation to memory-mapped registers
within the prefetch engine’s support
logic.

These integrated techniques are de-
signed to take advantage of compile-
time program information without in-
troducing as much instruction overhead
as pure software prefetching. Much of
the speculation by pure hardware
prefetching is also eliminated, resulting
in fewer unnecessary prefetches. Al-

though no commercial systems support
this model of prefetching yet, the simu-
lation studies used to evaluate the
above techniques indicate that perfor-
mance can be enhanced over pure soft-
ware or hardware prefetch mechanisms.

6. PREFETCHING IN MULTIPROCESSORS

In addition to the prefetch mechanisms
above, several multiprocessor-specific
prefetching techniques have been pro-
posed. Prefetching in these systems dif-
fers from uniprocessors for at least
three reasons. First, multiprocessor ap-
plications are typically written using
different programming paradigms than
uniprocessors. These paradigms can
provide additional array referencing in-
formation that enables more accurate
prefetch mechanisms. Second, multipro-
cessor systems frequently contain addi-
tional memory hierarchies that provide
different sources and destinations for
prefetching. Finally, the performance
implications of data prefetching can
take on added significance in multipro-
cessors because these systems tend to
have higher memory latencies and more
sensitive memory interconnects.

Fu and Patel [1991] examined how
data prefetching might improve the per-
formance of vectorized multiprocessor
applications. This study assumes vector
operations are explicitly specified by the
programmer and supported by the in-
struction set. Because the vectorized
programs describe computations in
terms of a series of vector and matrix
operations, no compiler analysis or
stride detection hardware is required to
establish memory access patterns. In-
stead, the stride information encoded in
vector references is made available to
the processor caches and associated
prefetch hardware.

Two prefetching policies were studied.
The first is a variation upon the
prefetch-on-miss policy, in which K con-
secutive blocks following a cache miss
are fetched into the processor cache.
This implementation of prefetch-on-
miss differs from that presented earlier

192 • S. P. VanderWiel and D. J. Lilja

ACM Computing Surveys, Vol. 32, No. 2, June 2000



in that prefetches are issued only for
scalars and vector references with a
stride less than or equal to the cache
block size. The second prefetch policy,
referred to as vector prefetching here, is
similar to the first policy, with the ex-
ception that prefetches for vector refer-
ences with large strides are also issued.
If the vector reference for block b misses
in the cache, then blocks b, b 1 stride,
b 1 ~2 3 stride!, . . . , b 1 ~K 3 stride!
are fetched.

Fu and Patel found both prefetch pol-
icies improve performance over the no
prefetch on an Alliant FX/8 simulator.
Speedups were more pronounced when
smaller cache blocks were assumed,
since small block sizes limit the amount
of spatial locality a nonprefetching
cache can capture, while prefetching
caches can offset this disadvantage by
simply prefetching more blocks. In con-
trast to other studies, Fu and Patel
found both sequential prefetching poli-
cies were effective for values of K up to
32. This is in apparent conflict with
earlier studies, which found sequential
prefetching to degrade performance for
K . 1. Much of this discrepancy may be
explained by noting how vector instruc-
tions are exploited by the prefetching
scheme used by Fu and Patel. In the
case of prefetch-on-miss, prefetching is
suppressed when a large stride is speci-
fied by the instruction. This avoids use-
less prefetches, which degraded the per-
formance of the original policy.
Although vector prefetching does issue
prefetches for large stride referencing
patterns, it is a more precise mecha-
nism than other sequential schemes be-
cause it is able to take advantage of
stride information provided by the pro-
gram.

Comparing the two schemes, it was
found that applications with large
strides benefit the most from vector
prefetching, as expected. For programs
in which scalar and unit-stride refer-
ences dominate, the prefetch-on-miss
policy tends to perform slightly better.
For these programs, the lower miss ra-

tios resulting from the vector prefetch-
ing policy are offset by the correspond-
ing increase in bus traffic.

Gornish et al. [1990] examined
prefetching in a distributed memory
multiprocessor where global and local
memory are connected through a multi-
stage interconnection network. Data are
prefetched from global to local memory
in large, asynchronous block transfers
to achieve higher network bandwidth
than would be possible with word-at-a-
time transfers. Since large amounts of
data are prefetched, the data are placed
in local memory rather than the proces-
sor cache to avoid excessive cache pollu-
tion. Some form of software-controlled
caching is assumed to be responsible for
translating global array addresses to lo-
cal addresses after the data been placed
in local memory.

As with software prefetching in sin-
gle-processor systems, loop transforma-
tions are performed by the compiler to
insert prefetch operations into the user
code. However, rather than inserting
fetch instructions for individual words
within the loop body, entire blocks of
memory are prefetched before the loop
is entered. Figure 12 shows how this
block prefetching may be used with a
vector-matrix product calculation. In
Figure 12(b), the iterations of the origi-
nal loop (Figure 12(a)) are partitioned
among NPROCprocessors of the multi-
processor system so that each processor
iterates over 1 / NPROCth of a and c .
Also note that the array c is prefetched
a row at a time. Although it is possible
to pull out the prefetch for c so that the
entire array is fetched into local memory
before entering the outermost loop, it is
assumed here that c is very large and a
prefetch of the entire array would occupy
more local memory than is available.

The block fetches given in Figure
12(b) add processor overhead to the
original computation in a manner simi-
lar to the software prefetching scheme
described earlier. Although the block-
oriented prefetch operations require size
and stride information, significantly less
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overhead is incurred than with the
word-oriented scheme, since fewer
prefetch operations are needed. Assum-
ing equal problem sizes and ignoring
prefetches for a, the loop given in Figure
12 generates N 1 1 block prefetches,
as compared to the 1 / 2~N 1 N 2!
prefetches that would result from apply-
ing a word-oriented prefetching scheme.

Although a single bulk data transfer
is more efficient than dividing the
transfer into several smaller messages,
the former approach tends to increase
network congestion when several such
messages are being transferred at once.
Combined with the increased request
rate that prefetching induces, this net-
work contention can lead to signifi-
cantly higher average memory laten-
cies. For a set of six numerical
benchmark programs, Gornish notes
that prefetching increases average
memory latency by a factor between 5.3
and 12.7 over the no prefetch case.

An implication of prefetching into the
local memory rather than the cache is
that the array a in Figure 12 cannot be
prefetched. In general, this scheme re-
quires that all data must be read-only
between prefetch and use because no
coherence mechanism is provided that
allows writes by one processor to be
seen by the other processors. Data

transfers are also restricted by control
dependencies within the loop bodies. If
an array reference is predicated by a
conditional statement, no prefetching is
initiated for the array. This is done for
two reasons. First, the conditional may
only test true for a subset of the array
references, and initiating a prefetch of
the entire array would result in the
unnecessary transfer of a potentially
large amount of data. Second, the condi-
tional may guard against referencing
nonexistent data, and initiating a
prefetch for such data could result in
unpredictable behavior.

Honoring the above data and control
dependencies limits the amount of data
that can be prefetched. On average, 42%
of loop memory references for the six
benchmark programs used by Gornish
could not be prefetched due to these
constraints. Together with the in-
creased average memory latencies, the
suppression of these prefetches limited
the speedup due to prefetching to less
than 1.1 for five of the six benchmark
programs.

Mowry and Gupta [1991] studied the
effectiveness of software prefetching for
the DASH DSM multiprocessor archi-
tecture. In this study, two alternative
designs are considered. The first design
places prefetched data in a remote access

nrows = N/NPROC;

fetch( b[0:N-1]);
for( i=0; i < nrows; i++){

fetch( c[i][0:nrows-1]);
for( j=0; j < N; j++)

a[i] = a[i] + b[j]*c[i][j];
}

for( i=0; i < N; i++){
for( j=0; j < N; j++)

a[i] = a[i] + b[j]*c[i][j];
}

(b)

(a)

Figure 12. Block prefetching for a vector-matrix product calculation.
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cache (RAC), which lies between the
interconnection network and the proces-
sor cache hierarchy of each node in the
system. The second design alternative
simply prefetched data from remote
memory directly into the primary pro-
cessor cache. In both cases, the unit of
transfer is a cache block.

The use of a separate prefetch cache
such as the RAC was motivated by a
desire to reduce contention for the pri-
mary data cache. By separating
prefetched data from demand-fetched
data, a prefetch cache avoids polluting
the processor cache and provides more
overall cache space. This approach also
avoids processor stalls that can result
from waiting for prefetched data to be
placed in the cache. However, in the
case of a remote access cache, only re-
mote memory operations benefit from
prefetching, since the RAC is placed on
the system bus and access times are
approximately equal to those of main
memory.

Simulation runs of three scientific
benchmarks found that prefetching di-
rectly into the primary cache offered the
most benefit with an average speedup of
1.94 compared to an average of 1.70
when the RAC was used. Despite signif-
icantly increasing cache contention and
reducing overall cache space, prefetch-
ing into the primary cache resulted in
higher cache hit rates, which proved to
be the dominant performance factor. As
with software prefetching in single pro-
cessor systems, the benefit of prefetch-
ing was application-specific. Speedups
for two array-based programs achieved
speedups over the non-prefetch case of
2.53 and 1.99 while the third, less regu-
lar, program showed a speedup of 1.30.

7. CONCLUSIONS

Prefetching schemes are diverse. To
help categorize a particular approach, it
is useful to answer three basic ques-
tions concerning the prefetching mecha-
nism: (1) When are prefetches initiated,
(2) where are prefetched data placed,

and (3) what is prefetched?

When Prefetches can be initiated ei-
ther by an explicit fetch opera-
tion within a program, by logic
that monitors the processor’s
referencing pattern to infer
prefetching opportunities, or
by a combination of these ap-
proaches. However they are
initiated, prefetches must be
issued in a timely manner. If a
prefetch is issued too early,
there is a chance that the
prefetched data will displace
other useful data from the
higher levels of the memory hi-
erarchy or be displaced itself
before use. If the prefetch is
issued too late, it may not ar-
rive before the actual memory
reference and thereby intro-
duce processor stall cycles.
Prefetching mechanisms also
differ in their precision. Soft-
ware prefetching issues fetches
only for data that is likely to be
used, while hardware schemes
tend to prefetch data in a more
speculative manner.

Where The decision of where to place
prefetched data in the memory
hierarchy is a fundamental de-
sign decision. Clearly, data
must be moved into a higher
level of the memory hierarchy
to provide a performance bene-
fit. The majority of schemes
place prefetched data in some
type of cache memory. Other
schemes place prefetched data
in dedicated buffers to protect
the data from premature cache
evictions and prevent cache
pollution. When prefetched
data are placed into named lo-
cations, such as processor reg-
isters or memory, the prefetch
is said to be binding, and addi-
tional constraints must be im-
posed on the use of the data.
Finally, multiprocessor systems
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can introduce additional levels,
which must be taken into con-
sideration, into the memory hi-
erarchy.

What Data can be prefetched in units
of single words, cache blocks,
contiguous blocks of memory,
or program data objects. The
amount of data fetched is also
determined by the organiza-
tion of the underlying cache
and memory system. Cache
blocks may be the most appro-
priate size for uniprocessors
and SMPs, while larger memory
blocks may be used to amortize
the cost of initiating a data
transfer across an interconnec-
tion network of a large, distrib-
uted memory multiprocessor.

These three questions are not inde-
pendent of each other. For example, if
the prefetch destination is a small pro-
cessor cache, data must be prefetched in
a way that minimizes the possibility of
polluting the cache. This means that
precise prefetches will need to be sched-
uled shortly before the actual use and
the prefetch unit must be kept small. If
the prefetch destination is large, the
timing and size constraints can be relaxed.

Once a prefetch mechanism has been
specified, it is natural to compare it to
other schemes. Unfortunately, a com-
parative evaluation of the various pro-
posed prefetching techniques is hin-
dered by widely varying architectural
assumptions and testing procedures.
However, some general observations
can be made.

The majority of prefetching schemes
and studies concentrate on numerical,
array-based applications. These pro-
grams tend to generate memory access
patterns that, although comparatively
predictable, do not yield high cache uti-
lization, and thus benefit more from
prefetching than general applications do.
As a result, automatic techniques that
are effective for general programs have
received comparatively little attention.

Within the context of array-based ref-

erencing patterns, prefetch mechanisms
provide varying degrees of coverage, de-
pending on the flexibility of the mecha-
nism. Because unit- or small-stride ar-
ray referencing patterns are the most
common and easily detected, all
prefetching schemes capture this type of
access pattern. Sequential prefetching
techniques concentrate exclusively on
such patterns. Although less frequent,
large-stride array referencing patterns
can result in very poor cache utilization.
The design of the RPT is motivated by
the desire to capture all constant-stride
referencing patterns, including those
with large strides. Array referencing
patterns that do not have a constant
stride or frequently change strides typi-
cally cannot be covered by pure hard-
ware techniques. Software prefetching
can provide coverage for any arbitrary
referencing pattern if the pattern can be
detected at compile-time. The array-
based integrated techniques discussed
thus far are designed to augment exist-
ing hardware techniques with software
support, but their coverage is limited by
the underlying hardware mechanisms.

Flexibility also tends to lend accuracy
to a prefetch scheme. Software and inte-
grated techniques avoid many of the
unnecessary prefetches characteristic of
pure hardware mechanisms, which are
more constrained in the prefetch
streams they can produce. These unnec-
essary prefetches can displace active
data within the cache with data that is
never used by the processor. In addition
to causing cache pollution, unnecessary
prefetches needlessly expend memory
bandwidth, which may already be lim-
ited due to the added pressure prefetch-
ing naturally places on the memory system.

Prefetch mechanisms also introduce
some degree of hardware overhead. All
techniques rely on cache hardware that
supports a prefetch operation. Most se-
quential schemes introduce additional
cache logic, with the exception of stream
buffers, which require hardware that is
external to the cache. Some techniques re-
quire that logic be added to the processor.
Pure software prefetching requires the
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inclusion of a fetch instruction in the
processors instruction set, while the
RPT and its derivatives add a compara-
tively large amount of logic overhead
into the processor.

Although software prefetching has
minimal hardware requirements, this
technique introduces a significant
amount of instruction overhead into the
user program. Integrated schemes at-
tempt to strike a balance between pure
hardware and software schemes by re-
ducing instruction overhead while still
offering better prefetch coverage than
pure hardware techniques.

Finally, memory systems must be de-
signed to match the added demands
prefetching imposes. Despite a reduc-
tion in overall execution time, prefetch
mechanisms tend to increase average
memory latency by removing processor
stall cycles. This effectively increases
the memory reference request rate of
the processor which, in turn, can intro-
duce congestion within the memory sys-
tem. This can be a problem, particularly
in multiprocessor systems where buses
and interconnect networks are shared
by several processors.

Despite the many application and sys-
tem constraints, data prefetching has
demonstrated the ability to reduce over-
all program execution time both in sim-
ulation studies and in real systems. Ef-
forts to improve and extend these
known techniques to more diverse ar-
chitectures and applications is an active
and promising area of research. The
need for new prefetching techniques is
likely to continue to be motivated by
increasing memory access penalties
arising from both the widening gap be-
tween microprocessor and memory per-
formance and the use of more complex
memory hierarchies.
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