
Process Ordering in a Process Calculus for
Spatially-Explicit Ecological Models

Anna Philippou and Mauricio Toro⋆ ⋆⋆

Department of Computer Science, University of Cyprus
{annap, mtoro}@cs.ucy.ac.cy

Abstract. In this paper we extend PALPS, a process calculus proposed for the
spatially-explicit individual-based modeling of ecological systems, with the no-
tion of a policy. A policy is an entity for specifying orderings between the dif-
ferent activities within a system. It is defined externally to a PALPS model as
a partial order which prescribes the precedence order between the activities of
the individuals of which the model is comprised. The motivation for introducing
policies is twofold: one the one hand, policies can help to reduce the state-space
of a model; on the other hand, they are useful for exploring the behavior of an
ecosystem under different assumptions on the ordering of events within the sys-
tem. To take account of policies, we refine the semantics of PALPS via a transition
relation which prunes away executions that do not respect the defined policy. Fur-
thermore, we propose a translation of PALPS into the probabilistic model checker
PRISM. We illustrate our framework by applying PRISM on PALPS models with
policies for conducting simulation and reachability analysis.

1 Introduction

Population ecology is a subfield of ecology that deals with the dynamics of species
populations and their interactions with the environment. Its main aim is to understand
how the population sizes of species change over time and space. It has been of special
interest to conservation scientists and practitioners who are interested in predicting how
species will respond to specific management schemes and in guiding the selection of
reservation sites and reintroduction efforts, e.g. [20,28].

One of the main streams of today’s theoretical ecology is the individual-based ap-
proach to modeling population dynamics. In this approach, the modeling unit is that
of a discrete individual and a system is considered as the composition of individuals
and their environment. Since individuals usually move from one location to another,
it is common in individual-based modeling to represent space explicitly. There are
four different frameworks in which spatially-explicit individual-based models can be
⋆ This work was carried out during the tenure by the second author of an ERCIM “Alain Bensous-

san” Fellowship Programme. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
no 246016.

⋆⋆ An extended abstract of this technical report has appeared in the Proceedings of the Second
Symposium on Modelling and Knowledge Management for Sustainable Development (MoK-
MaSD’13).

defined [5]. They differ in the way space and time are modeled: each can be treated ei-
ther discretely or continuously. The four resulting frameworks have been widely studied
in Population ecology and they are considered to complement as opposed to compete
with each other.

In this paper, we extend our previous work on a process-calculus framework for the
spatially-explicit modeling of ecological systems. Our process calculus, PALPS follows
the individual-based modeling and, in particular, it falls in the discrete-time, discrete-
space class of Berec’s taxonomy [5]. PALPS associates processes with information about
their location and their species. The habitat is defined as a graph consisting of a set of
locations and a neighborhood relation. Movement of located processes is then modeled
as the change in the location of a process, with the restriction that the originating and
the destination locations are neighboring locations. In addition, located processes may
communicate with each other by exchanging messages upon channels. Communication
may take place only between processes which reside at the same location. Furthermore,
PALPS may model probabilistic events, with the aid of a probabilistic choice operator,
and uses a discrete treatment of time. Finally, in PALPS, each location may be associ-
ated with a set of attributes capturing relevant information such as the capacity or the
quality of the location. These attributes form the basis of a set of expressions that refer
to the state of the environment and are employed within models to enable the enuncia-
tion of location-dependent behavior.

The extension presented in this paper is related to the issue of process ordering in-
side each time unit. In particular, simulations carried out by ecologists impose an order
on the events that may take place within a model. For instance, if we consider mortality
and reproduction within a single-species model, three cases exist: concurrent ordering,
reproduction preceding mortality and reproduction following mortality. In concurrent
ordering, individuals may reproduce and die simultaneously. For reproduction preced-
ing mortality, the population first reproduces, then all individuals, including new off-
spring, are exposed to death. For reproduction following mortality, individuals are first
exposed to death and, subsequently, surviving individuals are able to reproduce. Or-
dering can have significant implications on the simulation. Thus, alternatives must be
carefully studied before conclusions are drawn.

In order to capture process ordering in PALPS, we define the notion of a policy, an
entity that imposes an order on the various events that may take place within a system.
Formally, a policy, σ, is defined as a partial order on the set of events in the system
where, by writing (α, β) ∈ σ, we specify that, whenever there is a choice between exe-
cuting the activities α and β, β is chosen. As a result, a policy is defined externally to
a process description. This implies that one may investigate the behavior of a system
under different event orderings simply by redefining the desired policy without rede-
veloping the system’s description. To capture policies in the semantics of PALPS we
extend its transition relation into a prioritized transition relation which prunes away all
transitions that do not respect the defined policy.

Furthermore, we present a methodology for analyzing models of PALPS with poli-
cies via the probabilistic model checker PRISM [1]. To achieve this, we describe a
method for translating models of PALPS with policies into the PRISM language and we
prove its correctness. We then apply our methodology on simple examples that demon-

strate the types of analysis that can be performed on PALPS metapopulation models via
the PRISM tool. By contrasting our results with our previous work of [31], we observe
that policies achieve a significant reduction in the size of models and may thus enable
the analysis of larger systems.

Various formal frameworks have been proposed in the literature for modeling bi-
ological and ecological systems. Similarly to ecosystem modeling, these approaches
differ in their treatment of time and space and can be considered as supplements as
opposed to rivals of each other as each offers a distinct view and different techniques
for analyzing systems. One strand is based, like PALPS, on process calculi, and consti-
tute extensions of calculi such as CCS [24], the π-calculus [25] and CSP [22]. Examples
include WSCCS of [36] which follows the discrete-time approach to modeling but does
not include the notion of space. As far as continuous time is concerned, there are var-
ious proposals including [17,11,21,15] whereas numerous process calculi have been
proposed in the literature to model space including [9,33,10]. A different approach to-
wards modeling biological and ecological systems is that of P systems [32]. P systems
were conceived as a class of distributed and parallel computing inspired by the compart-
mental structure and the functioning of living cells. P-systems have been extended in
various directions and they have been applied to a wide range of applications including
the field of ecology [29,30,6,12,7,27,13]. Finally, we mention the calculus of looping
sequences [4], and its spatial extension [3] and cellular automata [19,14].

Regarding the notion of policies employed in PALPS with policies, we point out
that they are essentially a type of priorities usually referred to in the process-algebra
literature as static priority relations (see e.g. [16]) and are similar to the priorities de-
fined for P-Systems. In comparison to related works, as far as we know, PALPS with
policies is the first spatially-explicit formalism for ecological systems that includes the
notion of priority and employs this notion to experiment with different process order-
ings within process descriptions. Furthermore, via the translation to the PRISM language
our framework enables to carry out more advanced analysis of ecological models than
just simulation, which is the main approach adopted in the related literature. Possible
analysis techniques are those supported by the PRISM tool and include model-checking,
reachability analysis as well as computing expected behavior [18].

Structure of the paper. The structure of the remainder of the paper is as follows. In
Section 2 we present the syntax and the semantics of PALPS with policies. We illustrate
the expressiveness of the calculus by providing models of systems involving process
ordering in Section 2.4. In Section 3 we present a translation of PALPS into the Markov-
decision-process component of the PRISM language. We establish the correctness of the
translation and we overview the types of analysis that this translation makes possible
on PALPS models. We then apply these techniques on simple examples and we explore
the potential of the approach in Section 4. Finally, in Section 5, we conclude with a
discussion of future work.

2 The Process Calculus

In our calculus, Process Algebra with Locations for Population Systems (PALPS), we
consider a system as a set of individuals operating in space, each belonging to a certain

species and inhabiting a location. This location may be associated with attributes which
describe characteristics of the location and can be used to define location-dependent
behavior of individuals. Furthermore, individuals who reside at the same location may
communicate with each other by communicating upon channels, e.g. for preying, or they
may migrate to a new location where they may continue their computation. PALPS may
model probabilistic events with the aid of a probabilistic operator and uses a discrete
treatment of time.

2.1 The Syntax

In this section we formalize the syntax of PALPS which is built based on the following
basic entities:

– S: a set of species ranged over by s, s′.
– Loc: a set of locations ranged over by ℓ, ℓ′. The habitat of a system is then imple-

mented via a relation Nb, where (ℓ, ℓ′) ∈ Nb exactly when locations ℓ and ℓ′ are
neighbors. For convenience, we use Nb as a function and write Nb(ℓ) for the set of
all neighbors of ℓ.

– Ch: a set of channels ranged over by lower-case strings.
– Ψ : a set of attributes, ranged over by ψ, ψ′. We write ψℓ for the value of attribute ψ

at location ℓ.

Species and locations are characteristics associated with every individual in a PALPS
system. The species characteristic is static whereas the location characteristic is dy-
namic: as computation proceeds, an individual may change its location from ℓ to ℓ′

with the restriction that (ℓ, ℓ′) ∈ Nb. In turn, attributes are characteristics associated
with locations and they may capture information such as the capacity, the temperature
or the quality of the location. They form the basis of the set of expressions of the lan-
guage which is defined below.

Expressions. PALPS employs two sets of expressions: logical expressions, ranged over
by e, and arithmetic expressions, ranged over by w. These expressions are intended to
capture environmental situations which may affect the behavior of individuals. Expres-
sions e and w are constructed as follows:

e ::= true | ¬e | e1 ∧ e2 | w ◃▹ c

w ::= c | ψ@ℓ⋆ | s@ℓ⋆ | @ℓ⋆ | op1(w) | op2(w1, w2)

where c is a real number, ◃▹∈ {=,≤,≥}, ℓ⋆ ∈ Loc ∪ {myloc}, and op1 and op2 are
the usual unary and binary arithmetic operations on real numbers.

To begin with, logical expressions e are built using the propositional calculus con-
nectives, as well as comparisons between an arithmetic expression w and a constant
c (e.g., s1@ℓ + s2@ℓ > 1). Arithmetic expressions include three special expressions
interpreted as follows: Expression ψ@ℓ⋆ is equal to the value of attribute ψ at location
ℓ⋆. Expression s@ℓ⋆ is equal to the number of individuals of species s at location ℓ⋆,
and expression @ℓ⋆ denotes the total number of individuals of all species at location ℓ⋆.

Location ℓ⋆ can be an arbitrary location or the special location myloc. This latter
label is employed to bestow individuals with the ability to express conditions on the
status of their current location no matter where that might be, as computation proceeds.
Specifically, myloc refers to the actual location of the individual in which the expression
appears and it is instantiated to this location when the condition needs to be evaluated
(see rule (Cond) in Table 3). In conclusion, arithmetic expressions are the set of all
expressions formed by arbitrary constants c, quantities ψ@ℓ⋆, s@ℓ⋆, @ℓ⋆, and the usual
unary and binary arithmetic operations. Logical expressions and arithmetic expressions
are evaluated within a system environment (as defined in Tables 1 and 2).

Processes. The syntax of PALPS is given at three levels: (1) the individual level ranged
over by P , (2) the species level ranged over by R, and (3) the system level ranged over
by S. Their syntax is defined via the following BNFs:

P ::= 0 |
∑
i∈I

ηi.Pi | •
∑
i∈I

pi:P1 | cond (e1 � P1, . . . , en � Pn) | C

R ::= !rep.P

S ::= 0 | P :⟨s, ℓ⟩ | R:⟨s⟩ | S1 |S2 | S\L

where L ⊆ Ch, I is an index set, pi ∈ (0, 1] with
∑

i∈I pi = 1, e1, . . . , en, are logical
expressions such that e1 ∨ . . . ∨ en = true, C ranges over a set of process constants C,
each with an associated definition of the form C

def
= P , and

η ::= a | a | go ℓ |
√
.

Beginning with the individual level, P can be one of the following: Process 0 rep-
resents the inactive individual, that is, an individual who has ceased to exist. Process∑

i∈I ηi.Pi describes the nondeterministic choice between a set of action-prefixed pro-
cesses: it can execute any of the activities ηi and proceed as the respective Pi. We write
η1.P1 + η2.P2 to denote the binary form of this operator. In turn, an activity η can be
an input action on a channel a, written simply as a, a complementary output action on a
channel a, written as a, a movement action with destination ℓ, go ℓ, or the time-passing
action, written as

√
. Actions of the form a, and a, a ∈ Ch, are used to model arbitrary

activities performed by an individual; for instance, eating, preying and reproduction.
The tick action

√
measures a tick on a global clock. These time steps are abstract

in the sense that they have no defined length and, in practice,
√

is used to separate the
rounds of an individual’s behavior.

Process •
∑

i∈Ipi:Pi represents the probabilistic choice between processes Pi, i ∈ I .
The process randomly selects an index i ∈ I with probability pi, and then evolves to
process Pi. We write p1:P1⊕p2:P2 for the binary form of this operator. The conditional
process cond (e1 � P1, . . . , en � Pn) presents the conditional choice between a set of
processes: it behaves as Pi, where i is the smallest integer for which ei evaluates to true.
Note that this choice is deterministic. Finally, process constants provide a mechanism
for including recursion in the calculus.

Moving on to the species level, we employ the special species process R defined as
!rep.P . This process is a replicated process which may always receive input through

channel rep and create new instances of process P , where P is a new individual of
species R. Such inputs will be provided by individuals in the phase of reproduction via
the complementary action rep.

Finally, population systems are built by composing in parallel located individuals
and species. An individual is defined as P :⟨s, ℓ⟩, where s and ℓ are the species and the
location of the individual, respectively. A species is given byR:⟨s⟩, where s is the name
of the species. Finally, S\L models the restriction of the use of channels in set L within
S. As a syntactic shorthand, we will write P :⟨s, ℓ, n⟩ for the parallel composition of n
copies of process P :⟨s, ℓ⟩.

2.2 The Unprioritized Semantics

The semantics of PALPS is defined in terms of a structural operational semantics given
at the level of configurations of the form (E,S), where E is an environment and S is a
population system. The environmentE is an entity of the formE ⊂ Loc×S×N, where
each pair ℓ and s is represented in E at most once and where (ℓ, s,m) ∈ E denotes the
existence of m individuals of species s at location ℓ. The environment E plays a central
role in evaluating expressions.

The satisfaction relation for logical expressions |= is defined inductively on the
structure of a logical expression, as shown in Table 1. It depends on the evaluation
function for arithmetic expressions val (E,w) defined in Table 2.

Table 1. The satisfaction relation for logical expressions

E|=true always

E |= ¬e if and only if ¬(E |= e)

E |= e1 ∧ e2 if and only if E |= e1 ∧ E |= e2

E |= w ◃▹ e if and only if val (E,w) ◃▹ e

Before we proceed to the semantics we define some additional operations on envi-
ronments that we will use in the sequel:

Definition 1. Consider an environment E, a location ℓ and a species s.

– E⊕(s, ℓ) increases the count of individuals of species s at location ℓ in environment
E by 1:

E ⊕ (s, ℓ) =

{
E′ ∪ {(ℓ, s,m+ 1)} if E = E′ ∪ {(ℓ, s,m)} for some m
E ∪ {(ℓ, s, 1)} otherwise

Table 2. The evaluation relation for arithmetic expressions

val (E, c) = c
val (E,ψ@ℓ) = ψℓ

val (E, s@ℓ) = n, (ℓ, s, n) ∈ E
val (E, s@ℓ) = 0, (ℓ, s, n) ̸∈ E
val (E,@ℓ) =

∑
s∈S val (E, s@ℓ)

val (E,op1(w)) = op1(val (E,w))
val (E,op2(w1, w2)) = op2(val (E,w1), val (E,w2))

– E⊖(s, ℓ) decreases the count of individuals of species s at location ℓ in environment
E by 1:

E ⊖ (s, ℓ) =

E′ ∪ {(ℓ, s,m− 1)} if E = E′ ∪ {(ℓ, s,m)},m > 1
E′ if E = E′ ∪ {(ℓ, s, 1)}
⊥ otherwise

We may now define the unprioritized semantics of PALPS, presented in Tables 3
and 4. This semantics will then be refined into the prioritized semantics which takes
into account the notion of policies in Section 2.3. The unprioritized semantics is given
in terms of two transition relations: the non-deterministic relation −→n and the prob-
abilistic relation −→p. A transition of the form (E,S)

µ−→n (E′, S′) means that a
configuration (E,S) may execute action µ and become (E′, S′). A transition of the
form (E,S)

w−→p (E′, S′) means that a configuration (E,S) may evolve into config-
uration (E′, S′) with probability w. Whenever the type of the transition is irrelevant to
the context, we write (E,S)

α−→ (E′, S′) to denote either (E,S)
µ−→n (E′, S′) or

(E,S)
w−→p (E′, S′). Action µ appearing in the non-deterministic relation may have

one of the following forms:

– aℓ,s and aℓ,s denote the execution of actions a and a respectively at location ℓ by
an individual of species s.

– τa,ℓ,s′ denotes an internal action that has taken place on channel a, at location ℓ, and
where the output on awas carried out by an individual of species s. This action may
arise when two complementary actions take place at the same location ℓ or when a
move action take place from location ℓ. Note that this information was not included
in the semantics of PALPS as presented, e.g., in [31]. It is, however, necessary in
PALPS with policies in order to accommodate the enunciation of policies.

Rules for individuals. The rules of Table 3 prescribe the semantics of located indi-
viduals in isolation. The first four rules define non-deterministic transitions. The fifth
axiom defines a probabilistic transition, and the last two rules refer to both the non-
deterministic and the probabilistic case. All rules are concerned with the evolution of
the individual in question and the effect of this evolution to the system’s environment.

Table 3. Transition rules for individuals

(Nil) (E,0:⟨s, ℓ⟩)
√
−→n (E,0:⟨s, ℓ⟩)

(Tick) (E,
√
.P :⟨s, ℓ⟩)

√
−→n (EP,s,ℓ, P :⟨s, ℓ⟩)

(Act) (E, η.P :⟨s, ℓ⟩
ηℓ,s−→n (EP,s,ℓ, P :⟨s, ℓ⟩) η ̸= go ℓ′,

√

(Go) (E, go ℓ′.P :⟨s, ℓ⟩)
τgo,ℓ,s−→ n (((EP,s,ℓ,ℓ′ , P :⟨s, ℓ′⟩) (ℓ, ℓ′) ∈ Nb

(NSum) (E, ηi.Pi:⟨s, ℓ⟩)
µ−→n (E′, Pi:⟨s, ℓ′⟩)

(E,
∑
i∈I

ηi.Pi:⟨s, ℓ⟩)
µ−→n (E′, Pi:⟨s, ℓ′⟩)

(PSum) (E, •
∑

i∈Ipi:Pi:⟨s, ℓ⟩)
pi−→p (EPi,s,ℓ, Pi:⟨s, ℓ⟩)

(Const) (E,P :⟨s, ℓ⟩) α−→ (E′, P ′:⟨s, ℓ⟩)
(E,C:⟨s, ℓ⟩) α−→ (E′, P ′:⟨s, ℓ⟩)

C
def
= P

(Cond) (E,Pi:⟨s, ℓ⟩)
α−→ (E′, P ′

i :⟨s, ℓ′⟩), E|=ei ↓ℓ, E ̸ |=ej ↓ℓ, j < i

(E, cond (e1 � P1, . . . , en � Pn):⟨s, ℓ⟩)
α−→ (E′, P ′

i :⟨s, ℓ′⟩)

where EP,s,ℓ =

{
E ⊖ (s, ℓ) if P = 0
E otherwise

EP,s,ℓ,ℓ′ = ((E ⊖ (s, ℓ))⊕ (s, ℓ′))P,s,ℓ′

A key issue in the enunciation of the rules is to preserve the compatibility of P and E
as transitions are executed. We consider each rule separately:

– Axiom (Nil) specifies that the 0 process may execute the time consuming action
√

.
This axiom allows for time-progress in a system with inactive individuals.

– Axiom (Tick) specifies that a
√

-prefixed process will execute the time consuming
action

√
and then proceed as P . The state of the new environment depends on the

state of P . If P = 0 then the individual has terminated its computation and it is
removed fromE (see the definition ofEP,s,ℓ). If P ̸= 0 thenE remains unchanged.

– Axiom (Act) specifies that η.P executes action ηℓ,s and evolves to P . Note that
the action is decorated by the location and the species of the individual executing
the transition to enable synchronization of the action with complementary actions
taking place at the same location (see rule (Par2), Table 4). This axiom excludes
the cases of η = go ℓ and η =

√
which are treated in separate axioms.

– According to Axiom (Go), an individual may change its location. This gives rise to
action τgo,ℓ,s and has the expected effect on the environmentE. As we have already
mentioned, the label go, the location ℓ and the species s are recorded to enable the
enunciation of policies.

– Rule (NSum) describes the behavior of a nondeterministic choice: any of the avail-
able summands may be selected and executed.

– Rule (PSum) expresses the semantics of probabilistic choice: a process is chosen
probabilistically leading to the appropriate continuation. If the resulting state of
the individual, namely Pi, is equal to 0, then the individual is removed from the
environment E.

– Rule (Const) expresses the semantics of process constants in the expected way.
– Finally, rule (Cond) stipulates that a conditional process may perform an action of

continuation Pi assuming that ei ↓ ℓ evaluates to true and all ej ↓ ℓ, j < i evaluate
to false. Note that we write e↓ℓ for the expression e with all occurrences of myloc
substituted by location ℓ.

Rules for systems. We may now move on to Table 4 which defines the semantics of
system-level operators. The first two rules define the semantics for the replication oper-
ator, the next five rules define the semantics of the parallel composition operator, and
the last rule deals with the restriction operator.

According to rules (R Tick) and (R Rep), a species process may idle or it may
engage in action repℓ,s for any location ℓ and create a new individual P :⟨s, ℓ⟩.

Table 4. Transition rules for systems

(R Tick) R =!rep.P :⟨s⟩
(E,R)

√
−→n (E,R)

(R Rep) R =!rep.P :⟨s⟩, ℓ ∈ Loc
(E,R)

repℓ,s−→ n (E ⊕ (s, ℓ), P :⟨s, ℓ⟩|R)

(Par1) (E,S1)
µ−→n (E′, S′

1), (E,S2)−̸→p, µ ̸=
√

(E,S1|S2)
µ−→n (E′, S′

1|S2)

(Par2) (E,S1)
aℓ,s−→n (E1, S

′
1), (E,S2)

aℓ,s′−→n (E2, S
′
2)

(E,S1|S2)
τα,ℓ,s′−→ n (E ⊗ (E1, E2), S

′
1|S′

2)

(Par3) (E,S1)
w1−→p (E1, S

′
1), (E,S2)

w2−→p (E2, S
′
2)

(E,S1|S2)
w1·w2−→ p (E ⊗ (E1, E2), S

′
1|S′

2)

(Par4) (E,S1)
w−→p (E′, S′

1), (E,S2)−̸→p

(E,S1|S2)
w−→p (E′, S′

1|S2)

(Time) (E,S1)
√
−→n (E1, S

′
1), (E,S2)

√
−→n (E2, S

′
2)

(E,S1|S2)
√
−→n (E ⊗ (E1, E2), S

′
1|S′

2)

(Res) (E,S)
α−→ (E′, S′), α ̸∈ {aℓ,s, aℓ,s|a ∈ L}
(E,S\L) α−→ (E′, S′)\L

Rules (Par1) - (Par4) specify how the actions of the components of a parallel com-
position may be combined. Note that the symmetric versions of these rules are omitted.
We point out that, according to rule (Par2), if the parallel components may execute com-
plementary actions at the same location, then they may synchronize with each other
producing action τa,ℓ,s. Note that the internal action is decorated by the channel, the
location, and the species of the individual that produced an output on the channel dur-
ing the synchronization. If both components may execute probabilistic transitions then
they proceed together with probability the product of the two distinct probabilities (rule
(Par3)). If exactly one of them enables a probabilistic transition then this transition
takes precedence over any non-deterministic transitions of the other component (rule
(Par4)).

Note that in case that the components proceed simultaneously then the environment
of the resulting configuration should take into account the changes applied in both of
the constituent transitions (rules (Par2), (Par3) and (Time) as follows:

E ⊗ (E1, E2) = {(ℓ, s,m+ i1 + i2) | (ℓ, s,m) ∈ E,

(ℓ, s,m+ i1) ∈ E1, (ℓ, s,m+ i2) ∈ E2, i1, i2 ∈ Z}

Rule (Time) defines that parallel processes must synchronize on
√

actions. This
allows one tick of time to pass and all processes to proceed to their next round. Finally,
rule (Res) defines the semantics of the restriction operator in the usual way.

Initial configuration. Based on this machinery, the semantics of a system S is obtained
by applying the semantic rules to the initial configuration. The initial configuration,
(E,S), is such that (ℓ, s,m) ∈ E if and only if S contains exactly m individuals of
species s located at ℓ of the form P :⟨s, ℓ⟩, where P ̸= 0. In general, we say that E is
compatible with S whenever (ℓ, s,m) ∈ E if and only if S contains exactly m active
(non-0) individuals of species s located at ℓ. It is possible to prove that the defined
semantics preserves compatibility of configurations [2]:

Lemma 1. Whenever (E,S) α−→ (E′, S′) and E is compatible with S, then E′ is also
compatible with S′.

2.3 Policies and Prioritized Semantics

We are now ready to define the notion of a policy and refine the semantics of PALPS
accordingly. A policy σ is a partial order on the set of PALPS non-probabilistic actions.
By writing (α, β) ∈ σ we imply that action β has higher priority than α and when-
ever there is a choice between α and β, β should always be selected. For example, the
policy σ = {(reproduceℓ,s,disperseℓ,s)|ℓ ∈ Loc} specifies that, at each location, dis-
persal actions of species s should take place before reproduction actions. On the other
hand σ = {(reproduceℓ1,s, disperseℓ1,s), (disperseℓ2,s, reproduceℓ2,s)} specifies that,
while dispersal should proceed reproduction at location ℓ1, the opposite should hold at
location ℓ2.

To achieve this effect the semantics of PALPS needs to be refined with the use of
a new non-deterministic transition system. This new transition relation prunes away

all process executions that do not respect the priority ordering defined by the applied
policy. Precisely, given a PALPS system S and a policy σ then, the semantics of the
initial configuration (E,S) under the policy σ is given by −→p ∪ −→σ where the
prioritized nondeterministic transition relation −→σ is defined by the following rule:

(E,S)
α−→n (E′, S′) and (E,S) ̸ β−→n, (α, β) ∈ σ

(E,S)
α−→σ (E′, S′)

2.4 Examples

Example 1. We consider a simplification of the model presented in [35] which studies
the reproduction of the parasitic Varroa mite. This mite usually attacks honey bees and it
has a pronounced impact on the beekeeping industry. In this system, a set of individuals
reside on an n × n lattice of resource sites and go through phases of reproduction
and dispersal. Specifically, the studied model considers a population where individuals
disperse in space while competing for a location site during their reproduction phase.
They produce offspring only if they have exclusive use of a location. After reproduction
the offspring disperse and continue indefinitely with the same behavior. In PALPS, we
may model the described species s as R def

= !rep.P0, where

P0
def
= •

∑
ℓ∈Nb(myloc)

1

|Nb(myloc)|
: go ℓ.cond (s@myloc = 1� P1; true�

√
.P0)

P1
def
= rep.(p:

√
.P0 ⊕ (1− p):rep.

√
.P0)

We point out that the conditional construct allows us to determine the exclusive use
of a location by an individual. The special label myloc is used to denote the actual
location of an individual within a system definition. Furthermore, note that P1 models
the probabilistic production of one or two children of the species. During the dispersal
phase, an individual moves to a neighboring location which is chosen equiprobably
among the neighbors of its current location. A system that contains two individuals at a
location ℓ and one at location ℓ′ can be modeled as

System
def
= (P0:⟨ℓ, s, 2⟩|P0:⟨ℓ′, s⟩|(!rep.P0):⟨s⟩)\{rep}.

In order to refine the system so that during each cycle of the individuals’ life-
time all dispersals take place before the reproductions, we may employ the policy
{(τrep,ℓ,s, τgo,ℓ′,s)|ℓ, ℓ′ ∈ Loc}. Then, according to the PALPS semantics, possible exe-
cutions of System have the form:

System
w−→p (go ℓ1. . . . :⟨ℓ, s⟩|go ℓ2. . . . :⟨ℓ, s⟩|go ℓ3. . . . :⟨ℓ′, s⟩)\{rep}

τgo,ℓ1,s−→ σ (cond (. . .):⟨ℓ1, s⟩|go ℓ2. . . . :⟨ℓ, s⟩|go ℓ3. . . . :⟨ℓ′, s⟩)\{rep}

for some probability w and locations ℓ1, ℓ2, ℓ3, where, in the final state of the above
execution, no component will be able to execute the rep action before all components
finish executing their movement actions.

Example 2. Let us now extend the previous example into a two-species system. In par-
ticular, consider a competing species s′ of the Varroa mite, such as the pseudo-scorpion,
which preys on s. To model this, we may define the process R def

= !rep′.Q0, where

Q0
def
= cond (s@myloc ≥ 1�Q1, s@myloc < 1�Q2)

Q1
def
= prey.Q3 + rep′.Q4

Q2
def
= rep′.

√
.Q5

Q3
def
= rep′.

√
.Q0

Q4
def
= cond (s@myloc ≥ 1� prey.

√
.Q, s@myloc < 1�

√
.Q5)

Q5
def
= cond (s@myloc ≥ 1� prey.Q3, s@myloc < 1� 0)

An individual of species s′ initially has a choice between preying or producing an off-
spring. If it succeeds in locating a prey then it preys on it. If it fails then it makes another
attempt in the next cycle. If it fails again then it dies.

To implement the possibility of preying on the side of s, its definition must be
extended with complementary input actions on channel prey at the appropriate places:

P0
def
= •

∑
ℓ∈Nb(myloc)

1

|Nb(myloc)|
: (go ℓ.cond (s@myloc = 1� P1; true�

√
.P0) + prey.0)

P1
def
= rep.(p:

√
.P0 ⊕ (1− p):rep.

√
.P0) + prey.0

In this model it is possible to define an ordering between the actions of a single species,
between the actions of two different species or even between actions on which individ-
uals of the two different species synchronize. For instance, to specify that preying takes
place in each round before individuals of species s disperse and before individuals of
species s′ reproduce we would employ the policy

σ = {(τgo,ℓ,s, τprey,ℓ,s′), (τrep′,ℓ,s′ , τprey,ℓ,s′)|ℓ ∈ Loc}.

Furthermore, to additionally require that reproduction of species s precedes reproduc-
tion of species s′, we would write σ ∪ {(τrep′,ℓ,s′ , τrep,ℓ,s)|ℓ ∈ Loc}.

Example 3. As a final example, we consider a model inspired by [5] concerning the
possible ordering of the activities of reproduction, mortality and dispersal within a
single-species individual-based model. In particular, let us assume a species in which
individuals may go through reproduction and mortality before dispersing in each cycle
of their life. In this species, it is possible to distinguish three cases in which this behav-
ior may take place: reproduction and mortality may take place concurrently within a
model, reproduction may proceed mortality for every individual, or reproduction may
follow mortality, for every individual. We may model this species in PALPS as follows:

P0
def
= mortality.P 1

m + reproduction.P 1
r

P 1
m

def
= pm : 0⊕ (1− pm) : P 2

m

P 2
m

def
= reproduction.[pr : repm.D ⊕ (1− pr) : D]

P 1
r

def
= pr : repr.P

2
r ⊕ (1− pr) : P

2
r

P 2
r

def
= mortality.pm : 0⊕ (1− pm) : D

D
def
= •

∑
ℓ∈Nb(myloc)

1

|Nb(myloc)|
: go ℓ.

√
.P0

S1
def
= !repm.D

S2
def
= !repr.P

2
r

According to this definition, an individual of the species may initially nondetermin-
istically select between the activities of mortality (P 1

m) and reproduction (P 1
r). It then

goes through two phases for executing the two activities according to the chosen or-
der, where pm is the probability of mortality and pr the probability of reproduction.
Note that there are two species processes, namely, S1 and S2. They are distinguished by
whether new offspring is exposed to death during the first cycle of their life, as specified
in the reproduction before mortality process ordering (process S2).

We may now see that the three orderings discussed above can be implemented via
the policies: σ0 = ∅ for the concurrent ordering,

σ1 = {(reproductionℓ,s,mortalityℓ,s) | ℓ ∈ Loc}

for the mortality-before-reproduction ordering and

σ2 = {(mortalityℓ,s, reproductionℓ,s) | ℓ ∈ Loc}

for the mortality-follows-reproduction ordering. The intuition is that σ0 does not impose
any order between the two activities, thus, individuals of the species may concurrently
engage in reproduction and mortality whereas in σ1 and σ2 one activity takes priority
over another.

3 Translating PALPS into PRISM

In this section we turn to the problem of model checking PALPS models extended with
policies. As is the case of PALPS without policies, the operational semantics of PALPS
with policies gives rise to transition systems that can be easily translated to Markov
decision processes (MDPs). We recall that Markov decision processes are a type of
transition systems that combine probabilistic and non-deterministic behavior. As such,
model checking approaches that have been developed for MDPs can also be applied to
PALPS models.

PRISM is one such tool developed for the analysis of probabilistic systems. Specif-
ically, it is a probabilistic model checker for Markov decision processes, discrete time
Markov chains, and continuous time Markov chains. Using PRISM it is also possible to
generate random sample paths of execution for simulation. For our study we are inter-
ested in the MDP support of the tool. In [31] we defined a translation of PALPS into the
MDP subset of the PRISM language and we explored the possibility of employing the
probabilistic model checker PRISM to perform analysis of the semantic models derived
from PALPS processes. In this paper, we refine the translation of [31] for taking into
account the notion of policies.

In the remainder of this section, we will give a brief presentation of the PRISM
language, present an encoding of (a subset of) PALPS with policies into PRISM and
prove its correctness.

3.1 The PRISM language

The PRISM language is a simple, state-based language, based on guarded commands.
A PRISM model consists of a set of modules which can interact with each other on
shared actions following the CSP-style of communication. Each module possesses a
set of local variables which can be written by the module and read by all modules.
In addition, there are global variables which can be read and written by all modules.
The behavior of a module is described by a set of guarded commands. When modeling
MDPs these commands take the form:

[act] guard p1 : u1 + ... + pm :um;

where act is an optional action label, guard is a predicate over the set of variables,
pi ∈ (0, 1] and ui are updates of the form:

(x′1 = ui,1) & ... & (x′k = ui,k)

where ui,j is a function over the variables. Intuitively, such an action is enabled in
global state s if s satisfies guard. If a command is enabled then it may be executed in
which case, with probability pi, the update ui is performed by setting the value of each
variable xj to ui,j(s) (where x′j denotes the new value of variable xj).

A model is constructed as the parallel composition of a set of modules. The seman-
tics of a complete PRISM model is the parallel composition of all modules using the
standard CSP parallel composition. This means that all the modules synchronize over
all their common actions (i.e., labels). For a transition arising from synchronization be-
tween multiple processes, the associated probability is obtained by multiplying those
of each component transition. Whenever, there is a choice of more than one commands,
this choice is resolved non-deterministically. We refer the reader to [1] for the full de-
scription and the semantics of the PRISM language.

3.2 Encoding PALPS with policies into the PRISM language

As observed in [26], the main challenge of translating a CCS-like language (like PALPS)
into PRISM is how to map binary CCS-style communication over channels to PRISM’s

multi-way (CSP style) communication. Our approach for dealing with this challenge
in [31], similarly to [26], was to introduce a distinct action for each possible binary,
channel-based, communication which captures the channel as well as the sender/receiver
pair. The two other actions in PALPS, namely the tick action and the movement action,
were easily handled via the synchronous communication of PRISM, in the case of the
tick action, and via a single PRISM command, in the case of the movement action.

In PALPS with policies the translation becomes more complex because, at any point,
we need to select actions that are not preempted by other enabled actions. For, sup-
pose that according to our policy σ, (α, β) ∈ σ. This implies that, at any point during
computation, we must have information as to whether β is enabled. To implement this
in PRISM, we employ a variable nβ which records the number β’s enabled. To begin
with, this variable is initialized with the relevant values as given rise to by the model.
Subsequently, it is updated as computation proceeds: once a β is executed then nβ is
decreased by 1 and when a new occurrence becomes enabled it is increased by 1. For
example, given the process η1.P1 + η2.P2, if action η1 is executed and if additionally
η2 = β, then nβ should be decreased by 1 and, if P1 enables β then nβ should be
increased accordingly. Finally, we point out that, if (α, β) ∈ σ, execution of action α in
any module of a model should have as a precondition that nβ = 0.

To translate PALPS into the PRISM language, we translate each process into a module.
The execution flow of a process is captured with the use of a local variable within the
module whose value is updated in every command in such as way as to guide the compu-
tation through the states of the process. Then, each possible construct of PALPS is mod-
eled via a set of commands. For example, the probabilistic summation is represented by
encoding the probabilistic choices into a PRISM guarded command. Non-deterministic
choices are encoded by a set of simultaneously enabled guarded commands that cap-
ture all nondeterministic alternatives, whereas the conditional statement is modeled as
a set of guarded commands, where the guard of each command is determined by the
expressions of the conditional process.

Unfortunately, the replication operator cannot be directly encoded into PRISM since
the PRISM language does not support the dynamic creation of modules. To overcome
this problem, we consider a bounded replication construct of the form !mP in which we
specify the maximum number ofP ’s, namelym, that can be created during computation.
We note that, in practice, the value of m can be selected by estimating a bound of the
maximum size of the population, or it can be determined by the size of the state-space
of the resulting model.

We now consider the main ideas of translating PALPS into the PRISM language via
an example.

Example 4. Consider a habitat consisting of four patches {1, 2, 3, 4}, where Nb is the
symmetric closure of the set {(1, 2), (1, 3), (2, 4), (3, 4)}. Let s be a species residing on

this habitat defined according to the bounded replication R:

R
def
= !mrep.P1

P1
def
= disperse.P2 + reproduce.P3

P2
def
= •

∑
ℓ∈Nb(myloc)

1

2
: go ℓ.P4

P3
def
= p : rep.P5 ⊕ (1− p) : P5

P4
def
= p : rep.

√
.P1 ⊕ (1− p) :

√
.P1

P5
def
= •

∑
ℓ∈Nb(myloc)

1

2
: go ℓ.

√
.P1

According to the definition, an individual of species s begins by nondeterministically
selecting between the activities of dispersal and reproduction. If dispersal it selected,
then it migrates with equal probability to one of the neighboring locations and then
probabilistically produces an offspring before returning to its initial state. If reproduc-
tion is selected, then the order between these two activities is swapped. Now, consider
a system initially consisting of two individuals, one at location 1 and one at location 4:

System
def
= (P1:⟨s, 1⟩ | P1:⟨s, 4⟩ | R:⟨s⟩)\{rep}

Further, suppose that we would like to analyze the system under the policy

σ = {(reproduceℓ,s, disperseℓ,s), (τrep,ℓ,s, τgo,ℓ,s,) | ℓ ∈ Loc}.

That is, we are interested in a process ordering where dispersal takes place before repro-
duction and all movement actions proceed the reproduction synchronizations.

In order to translate System under policy σ in the PRISM language we first need to
encode global information relating to the system. This consists of four global variables
that record the initial populations of each of the locations and two variables that record
the number of enabled occurrences of the actions of the higher priority referred to in
the policy σ, that is, of disperses and τgo,s. We also include a global variable i that
measures the inactive individuals still available to be triggered. Initially i = m.

global s1, s4: [0,m+2] init 1;
global s2, s3: [0,m+2] init 0;
global i: [0,m] init m;
global n_d: [0,m+2] init 2;
global n_g: [0,m+2] init 0;

We continue to model the two individuals P1:⟨s, 1⟩ and P1:⟨s, 4⟩. Each individ-
ual will be described by a module. In Fig. 1, we may see the translation of individual
P1:⟨s, 1⟩.

We observe, that its species variable, s1, is set to 1, a constant that identifies the
species, its location variable, loc1, is set to 1 and variable st1, recording its state, is set
to 1, the initial state of the module. Overall, the module has 15 different states. From

module P1

st1 : [1..15] init 1;
loc1: [1..4] init 1;
const int s1 = 1;

[disperse] (st1=1)&(pact=0) -> (st1’=2)&(n_d’=n_d-1)&(pact=1);
[reproduce] (st1=1)&(n_d=0)&(pact=0) -> (st1’=3)&(n_d’=n_d-1);

[prob] (st1=2) -> 0.5:(st1’=6)&(n_g’=n_g+1)&(pact’=0)
+ 0.5:(st1’=7)&(n_g’=n_g+1)&(pact’=0);

[] (st1=6)&(loc=1)&(pact=0) -> (loc’=2)&(s1’=s1-1)&(s2’=s2+1)
&(n_g’=n_g-1)&(st’=4);

[] (st1=7)&(loc=1)&(pact=0) -> (loc’=3)&(s1’=s1-1)&(s3’=s3+1)
&(n_g’=n_g-1)&(st’=4);

... // All possible moves are enumerated

[prob] (st1=4) -> 0.5:(st1’=8) + 0.5:(st1’=13)&(pact’=0);

[] (st1=8)&(i>0)&(n_g=0)&(pact=0) -> (s1’=s1+1)&(i’=i-1)&(st’=9);
[rep_1_3] (st1=9)&(pact=0) -> (st1’=13); // Activate module 3
... // All activation possibilities are enumerated

[prob] (st1=3) -> 0.5:(st1’=10)&(pact’=0)
+ 0.5:(st1’=5)&(pact’=0);

[] (st1=10)&(i>0)&(n_g=0)&(pact=0) ->
(s1’=s1+1)&(i’=i-1)&(st’=11);

[rep_1_3] (st1=11)&(pact=0) -> (st1’=5)&(pact’=1);
... // All activation possibilities are enumerated

[prob] (st1=5) -> 0.5:(st1’=11)&(n_g’=n_g+1)&(pact’=0)
+ 0.5:(st1’=12)&(n_g’=n_g+1)&(pact’=0);

[] (st1=11)&(loc=1)&(pact=0) -> (loc’=2)&(s1’=s1-1)&(s2’=s2+1)
&(n_g’=n_g-1)&(st’=13);

[] (st1=12)&(loc=1)&(pact=0) -> (loc’=3)&(s1’=s1-1)&(s3’=s3+1)
&(n_g’=n_g-1)&(st’=13);

... // All possible moves are enumerated

[tick] (st1=13) -> (st1’=15);
[] (st1=14) -> (n_d’=n_d+1)&(st1’=15);
[tick’] (st1=15) -> (st1’=1);

[prob] (pact=1)&(st1!=2,3,4,5) -> (pact’=0);
endmodule

Fig. 1. PRISM code for an active individual

state 1 two commands are enabled: one of actions disperse and reproduce can take
place, though the latter has as a precondition that nd = 0. Thus, in fact, it will never
be enabled. Then from state 2, a probabilistic transition takes place to determine the
position of dispersal. This yields one of the states 6 and 7 which result in horizontal and
vertical dispersals along the grid, respectively. In both bases variable ng is increased by
one as the go action becomes enabled. Note that the actions enabled from states 6 and
7 update the number of individuals of the source and destination locations of the move
and the variable ng is decreased by one as there is now one fewer movement action
enabled. From state 4 a probabilistic transition determines whether the individual will
reproduce or not. In the case that dispersal is selected, it is executed in two distinct steps:
initially at state 8 it is confirmed that there is still an individual to activate and that no
movement actions are currently enabled. In this case variables i and sloc are updated
and the flow of control is passed on to state 9 where a synchronization with an inactive
module is performed. Finally, we point out that the tick action is implemented via three
actions in PRISM (states 13-15): initially all modules are required to synchronize on the
tick action, then they all perform their necessary updates for actions that will become
enabled by the move and, finally, the modules are required to synchronize again before
they may start to execute their next time step.

Note that for both the reproduction and the tick actions the moves given rise to by
our translation cannot be merged into one due to the restriction of PRISM that commands
which synchronize with other modules (such as rep) cannot modify global variables
(such as si).

Individual P1:⟨s, 4⟩ may be defined similarly. Note that the module encoding this
process is identical to module P1 with the exception that we rename the names of the
variables and the initial value of the location variable.

This leaves us with the encoding of R: the component that implements replication
of individuals. As we have already discussed, we achieve this via bounded replication
which makes an assumption on the maximum number of new individuals that can be cre-
ated in a system. Given this assumption, our model must be extended by an appropriate
number of inactive individuals awaiting for a trigger via a rep i j action as illustrated
in Fig. 2.

Thus, the inactive individual modeled by module P3, awaits to synchronize with
any of the remaining modules 0,...,m + 2, in which case it inherits the location of the
synchronizing module and it sets st3 = 1 so that it may begin to execute the code of an
active individual, presented in Fig. 1, with the variables appropriately renamed.

3.3 Formal translation

In this section, we will formalize the intuitions of the previous example into a formal
translation of PALPS into PRISM and we will prove its correctness.

Consider a PALPS model. This consists of a set of locations, L = {1, . . . , k}, a set of
attributes, Θ = {θ1, . . . , θm}, and a value of each attribute at each location, the neigh-
borhood relation Nb, a process System and a policy σ = {(α1, β1), . . . , (αp, βp)}. We
assume, for the reasons already discussed in the previous section, that all replication
processes are bounded and have the form R =!nrep.P , thus allowing the creation of

module P3

st3 : [0..15] init 0;
loc3: [1..4] init 1;
const int s3 = 1;
[tick] (st3=0) -> (st3’=0);
[tick’] (st3=0) -> (st3’=0);
[rep_1_3] (st3=0) -> (st3’=1)&(loc3=loc1); ...
[rep_max_3] (st3=0) -> (st3’=1)&(loc3=loc_max); ...
// Here we append the code of an active P_1 individual
// with the variables appropriately renamed

endmodule

Fig. 2. PRISM code for an inactive individual

up to n individuals of the specific species. We also, assume that all rep channels are
restricted within System. Then, the PRISM model is constructed as follows:

– For each species s, the model contains the k global integer variables
s1, . . . , sk, capturing the number of individuals of species s for each of the loca-
tions. The variables are appropriately initialized based on the definition of System.

– For each attribute θ and each location ℓ, the model contains a constant that records
the value of θℓ.

– For each channel a on which synchronization takes place we introduce a variable
ay which counts the number of available inputs at location y.

– There exists a global variable atomic which may take values from {0, 1} and is
used to force the atomic execution of sequences of actions forming the translation
of a single PALPS action. Initially, atomic = 0.

– There exists a global variable pact which may take values from {0, 1} and ex-
presses whether there is a probabilistic action enabled. It is used to give precedence
to probabilistic actions over nondeterministic actions. Initially, pact = 0. Further-
more, all non-probabilistic actions have pact = 0 as a precondition.

– For each action β such that (α, β) ∈ σ, we distinguish two cases. If β is an in-
put/output action on a channel or the action τgo,ℓ,s, then we introduce a variable
nβ which counts the number of enabled actions of type β. If instead β = τa,ℓ,s for
some channel a, then we employ three variables na,ℓ, na,ℓ and nβ which count the
available occurrences of aℓ,s, aℓ,s and β, respectively.

– Each (active) process P :⟨s, ℓ⟩ of System becomes a PRISM module with a constant
spP = s, a variable locP = ℓ and a variable stP , with range 1, . . . , |P |, which
records the current state of the individual and where |P | is the number of states
that P may evolve to. The body of the module is the translation of process P into
guarded commands.

– Each species definition R:⟨s⟩ =!nrep.P of System becomes a sequence of n
PRISM modules, Px+1, . . . , Px+n, where x is the number of individuals of species s
in the initial state of System. In our model, we introduce a variable is that records
the current number of inactive individuals of species s:

is : [0, n] init n;

Each inactive module Py possesses a constant spy = s, a variable locy which is not
initialized, and another variable sty , with range 0, . . . , |P |, which corresponds to
the current state of the individual and where |P | is the number of states that P may
evolve to. Note that sty = 0 corresponds to the state where the inactive individual
is awaiting activation by one of the active individuals of species s. To capture this,
we include the following commands:

module Py

sty : [0..|P |] init 0;

locy : [1..m];

const int sy = s;

[tick](sty = 0) −→ (st′y = 0)

[tick′](sty = 0) −→ (st′y = 0)

[rep1,y](sty = 0) −→ (st′y = 1)&(locy = loc1);

. . .

[repx+n,y](sty = 0) −→ (st′y = 1)&(locy = locx);

. . .

//Here we append the translation of P

endmodule

Thus, Py may be activated by any of the modules P1, . . . , Px+n and then proceed
according to the translation of process P into guarded commands.

We now continue to describe how a process at the individual level of PALPS can be
translated to a sequence of PRISM commands. We denote the translation of a process P
as [[P]] and we define it inductively on the structure of P . Note that, for convenience, we
write sQ to for the state (integer value) associated with process Q. In the translations
below, we assume that we are working within a module with identifier x, species s, and
variables st, and loc. Furthermore, we write

– enabled(P) for the set of all input actions aℓ such that P aℓ−→,
– enabledσ(P) for the set of all actions such that, for all (β, α) ∈ σ, if α ̸= τa,ℓ then
α ∈ enabledσ(P), and if α = τa,ℓ then aℓ, aℓ ∈ enabledσ(P),

– enabledσ,τ (P) for the set of all actions α = τa,ℓ,s such that P α−→ and (β, α) ∈ σ,
and

– prob(P) for the logical value that expresses whether P is a probabilistic process.

Based on these notions, we write

updates(P,Q) =
∧

aℓ∈enabled(Q)

(a′ℓ = aℓ + 1)&
∧

aℓ∈enabled(P)

(a′ℓ = aℓ − 1)

&
∧

µ∈enabledσ(Q)

(n′µ = nµ + 1)&
∧

µ∈enabled(P)

(n′µ = nµ − 1)

&
∧

τa,ℓ∈enabledσ(Q),τ

n′τa,ℓ
= min(naℓ

, naℓ
)&pact = prob(P)

Finally, in the translations below, we assume that we are working within a module with
identifier x and variables st, and loc.

Case 1: Q = go l.P . We translate the process by including the command

[] (st = sQ)&(loc = a)&(atomic = 0)&(pact = 0)&((a, ℓ) ∈ Nb)&(nβ = 0)

−→ (st′ = sP)&(loc′ = l)&(st′a = sta − 1)&(st′l = stl + 1)&updates(Q,P);

where the highlighted condition (nβ = 0) is only present if there exists (τgo,ℓ, β) ∈ σ.
We then append the translation ofP . Note that according to its definition, updates(Q,P)
will increase by 1 all variables nα where the action α is enabled by Q while reducing
nα, α = τgo,ℓ,s by 1, since there is now one less occurrence of the specific action.

Case 2: Q = a.P . To begin with, the process is translated into the following command
which captures the possibility that Q executes the input action on channel a indepen-
dently of synchronizing output actions.

[ax] (st = sQ)&(atomic = 0)&(pact = 0)&(nβ = 0) −→ (st′ = sP)&updates(Q,P);

where the highlighted condition is included only if there exists (aloc,s, β) ∈ σ. Addi-
tionally, we include the commands

[ay,x] (st = sQ)&(loc = locy) −→ (st′ = sQ1);

[] (st = sQ1) −→ (st′ = sP)&updates(Q,P)&(atomic′ = 0);

for each module y that may perform an output on channel a. Note that this transition
does not have the requirement that atomic = 0. This will be explained in conjunction
with the translation of the action a in Case 3, below. We then append the translation of
P .

Case 3: Q = a.P . Similarly to Case 2, we include the following command to capture
that Q may execute a independently of any synchronizing action on channel a.

[a′x] (st = sQ)&(atomic = 0)&(pact = 0)&(nβ = 0) −→ (st′ = sP)&updates(Q,P);

where the highlighted condition is included only if there exists (aloc,s, β) ∈ σ.
Furthermore, we include the commands

[] (st = sQ)&(aloc > 0)&(atomic = 0)&(pact = 0)&(nβ = 0) −→
(st′ = sQ1)&updates(Q,P)&(atomic = 1);

[ax,y] (st = sQ1)&(loc = locy) −→ (st′ = sP);

for each module y that may perform an input on channel a. Note that in this piece
of code, initially a process willing to perform an output checks whether there is an-
other process willing to do an input at the same location (aloc > 0), assuming that
atomic = 0 and pact = 0. In this case, it performs all its updates and sets atomic = 1.
It then proceeds to synchronize with a process ready to do an input via action ax,y
at its location. Note that such an action is enabled as an input without a restriction of
atomic = 0. We may then observe that the process synchronizing on the input (see Case
2) will continue to perform via a second action its own updates and set atomic = 0. We
point out that splitting this synchronization in three distinct commands was necessary
due to the fact that in PRISM, actions in which synchronization is performed (such as
ax,y) do not permit to update global variables as necessary by updates(Q,P).

As before the condition (nβ = 0) is included only if there exists (τα,ℓ,s, β) ∈ σ.
We then append the translation of P .

Case 4: Q =
√
.P . We translate the process by including the commands

[tick](st = sQ) −→ (st′ = sQ1);

[](st = sQ1) −→ updates(Q,P)&(st′ = sQ2);

[tick′](st = sQ2) −→ (st′ = sP);

and appending the translation of P . Note that, as in the case of a synchronization, this
action needs to be split in three steps: in the first step all modules synchronize on the
tick action, they each then perform their updates, and, before any module may proceed,
the modules are forced to synchronize on the tick′ action. This is again necessary since
the necessary updates cannot be performed while the module are synchronizing on their
tick actions.

Case 5: Q = rep.P . We translate the process by including the commands

[repy,x] (st = sQ) −→ (st′ = sQ1);

[] (st = sQ1) −→ (st′ = sP)&updates(Q,P)&atomic′ = 0;

for each module y that may perform an output on channel rep. We then append the
translation of P . The translation is explained in conjunction with the next case.

Case 6: Q = rep.P . We translate the process by including the commands

[] (st = sQ)&(is > 0)&(atomic = 0)&(pact = 0)&(nβ = 0) −→
(i′s = is − 1)&(st′ = stQ1)&updates(Q,P)&(atomic′ = 1);

[repx,y] (st = sQ1) −→ (st′ = sP);

for each inactive module y of species s, and then appending the translation of P . As
before, the highlighted condition is included only if there exists (τrep,ℓ,s, β) ∈ σ. Note
that in this case, a module aiming to perform the reproduction action rep begins by
confirming that there are inactive modules of its species still available (is > 0) and that
atomic = 0 and pact = 0. In such a case, it reduces is by 1, it performs its updates and
it sets atomic′ = 1 so that the next two steps are performed atomically. These steps
consists of a synchronization of the current module with the module of an inactivated

individual (action repx,y) after which the newly-activated individual will perform its
updates and set atomic = 0.

Case 7: Q = α1.P1 + α2.P2. We translate the process by computing the translations
[[α1.P1]] and [[α2.P2]] and replacing all commands of the form

[act](st = stα1.P1) guard −→ updates;

by

[act](st = stQ) guard −→ updates′

where updates′ is the same as updates expect that we compute updates(Q,P1) in-
stead of updates(α1.P1, P1), and similarly for the commands of [[α2.P2]].

Case 8: Q = p1 : P1 + . . . + pn : Pn. We translate the process by appending
[[P1]], . . . , [[Pn]] to the command:

[prob](st = sQ) −→ p1 : (st′ = sP1)&updates(Q,P1) + . . .

+pn : (st′ = sPn)&updates(Q,Pn);

Case 9: Q = cond (e1 � P1, . . . , en � Pn). We translate the process by constructing
[[P1]], . . . , [[Pn]] and replacing each command of the form:

[act](st = sPi)&guard −→ updates;

by the command

[act](st = sQ)&![[e1@loc]]& . . .&![[e(i−1)@loc]]&[[ei@loc]]&guard −→ updates;

where [[e@loc] is the translation of the PALPS expression e@ℓ into the PRISM language.

Case 10: Q = P\L. We translate the process by computing [[P]] and then removing all
transitions with label [ai] and [a′i] where a ∈ L.

Case 11 C, C def
= P . We translate the process by computing [[P]] and replacing each

command in [[P]] of the form

[](st = sP)&guard −→ updates;

by

[](st = sQ)&guard −→ updates;

Case 11: Q = 0. We translate the process as

[](st = s0)&(loc = l) −→ (s′l = sl − 1)&(st′ = sdone);

[tick](st = sdone) −→ (st = sdone);

[tick′](st = sdone) −→ (st = sdone);

Finally, in each module we include a transition that allows the module to perform a
probabilistic action, assuming that pact = 1, i.e. there exists at least one module willing
to execute a probabilistic action. In this way probabilistic actions are given precedence
over nondeterministic actions as required by the semantics. Note that a module resorts
to this action only if itself does not enable a probabilistic action. Assuming that the
probabilistic states of the module are s1, . . . , sp, this remaining action is as follows:

[prob](pact = 1)&(st! = s1)& . . .&(st! = sp) −→ (st = sdone);

3.4 Correctness of the translation

We now turn to consider the correctness of the proposed translation. This is demon-
strated via the following two theorems. In what follows, given a PRISM model M , we
write M

α,pi−→ Mi if M contains an action [α] guard -> p1 : u1 + . . . + pm : um;
where guard is satisfied in model M and execution of ui gives rise to model Mi. Fur-
thermore, we write M −→m M ′ if M(

α,1−→)mM ′, that is, M may evolve into M ′ after
an a sequence of m moves each of which is executed with probability 1.

Theorem 1. For any configuration (E,Sys) and policy σ, whereE is compatible with
Sys, the following hold:

1. if (E,Sys)
µ−→σ (E′, Sys′) then [[(E,Sys)]] −→m [[(E′, Sys′)]], for some m,

2. if (E,Sys) w−→p (E′, Sys′) then [[(E,Sys)]]
prob,w−→ [[(E′, Sys′)]].

Theorem 2. For any configuration (E,Sys) and policy σ, whereE is compatible with
Sys, the following hold:

1. if [[(E,Sys)]]
prob,w−→ M then (E,Sys)

w−→p (E′, Sys′) and M = [[(E′, Sys′)]],

2. if [[(E,Sys)]]
a,1−→ M , then (E,Sys)

a−→σ (E′, Sys′) and M −→m M ′ for
some m, where M ′ = [[(E′, Sys′)]] and whenever M −→m M ′′ then M ′′ =
[[(E′, Sys′)]].

Theorem 1 establishes that each transition of (E,Sys) can be mimicked by its trans-
lation module in a sequence of steps: in the case of probabilistic actions this is achieved
in a single step, whereas in the case of nondeterministic actions, this may take more
than one step in the PRISM translation. Theorem 2 considers the other direction of the
correctness: Given a transition of a PRISM module there are two possibilities. If the
transition is a prob transition, when a probabilistic action with the same probability
may take place at the PALPS level. Otherwise, it is possible that the transition of the
module has resulted in the first of a sequence of states for establishing the transition of
a PALPS process. In this case, the intermediate state may perform no other execution
steps other than to reach the translation of the resulting process of the PALPS process.

Sketch of the proof of Theorem 1: The proof consists of a case analysis of all possi-
ble ways in which the transition (E,Sys)

α−→ (E′, Sys′) can be produced. Four cases
exist:

– If the transition involves a single process participant P :⟨s, ℓ⟩, then we may verify by
induction on the structure of P that any action P can perform can also be performed
by its translation and the resulting PRISM model is the translation of (E′, Sys′). In
all cases this can be established in a single move of module P .

– If instead the transition has arisen via the communication of two components of
Sys then it is possible to establish that the two modules corresponding to the two
components share the action in question and can thus execute the synchronization.
This will take three actions at the PRISM level.

– If α =
√

, then it must be that all components of Sys enable the transition
√

. We
may then observe that the PRISM translations of the components enable the tick
action and thus the transition can be performed in a sequence of moves.

– if α = w, then it must be that a set of Sys processes enable a probabilistic transition
and w is the product of the associated probabilities. We may then observe that all
PRISM components enable the prob action with the respective modules enabling the
specific probabilistic actions and the remaining modules enabling the action with
probability 1. As a result the PRISM model will match the transition with a (prob, q)
action. The resulting PRISM model is the translation of (E′, Sys′). 2

Sketch of the proof of Theorem 2: The proof consists of a case analysis of all pos-

sible ways in which the transition [[(E,Sys)]]
(a,p)−→ M can be produced. It follows

along similar lines with the proof of Theorem 1. The interesting cases include the
synchronizations, the activations of inactive modules, and the tick action. The impor-
tant point to note here is that, in all cases, the intermediate step M captures correctly
environment E′ in the transition (E,Sys)

α−→ (E′, Sys′). Furthermore, the assign-
ment atomic = 1 locks all actions not involved in the completion of the translation of
(E,Sys)

α−→ (E′, Sys′). As result, there exists exactly one possible path of execution
of the PRISM model which is exactly the one leading to [[(E′, Sys′)]]. 2

3.5 Verification in PRISM

In this section we briefly describe the types of analysis that can be performed on PALPS
models via the PRISM model checker.

Model Checking To begin with, PALPS models may be model checked in PRISM against
properties specified in the PCTL logic [8]. The syntax of the PCTL logic is given by the
following grammar where Φ and ϕ range over PCTL state and path formulas, respec-
tively, p ∈ [0, 1] and k ∈ N.

Φ := true | e | ¬Φ | Φ ∧ Φ′ | P◃▹p[ϕ]

ϕ := XΦ | ΦUkΦ | Φ1UΦ

In the syntax above, we distinguish between state formulas Φ and path formulas ϕ,
which are evaluated over states and paths, respectively. A state formula is built over
logical expressions e and the construct P◃▹p[ϕ]. Intuitively, a configuration s satisfies
property P◃▹p[ϕ] if for any possible execution beginning at the configuration, the proba-
bility of taking a path that satisfies the path formula ϕ satisfies the condition ◃▹ p.

Path formulas include the X (next), Uk (bounded until) and U (until) operators,
which are standard in temporal logics. Intuitively, XΦ is satisfied in a path if the next
state satisfies path formula Φ. Formula Φ1U

kΦ2 is satisfied in a path if Φ1 is satisfied
continuously on the path until Φ2 becomes true within k time units (where time units are
measured by

√
events in PALPS). Finally, formula Φ1UΦ2 is satisfied if Φ2 is satisfied

at some point in the future and Φ1 holds up until then.
As an example, consider a population s in danger of extinction. A property that

one might want to check for such a population is that the probability of extinction of
the population in the next ten years is less than a certain threshold pe. This can be
expressed in PCTL by the property P≤pe [trueU

10
∑

ℓ∈Loc s@ℓ = 0]. Alternatively, one
might express that a certain central location ℓ will be re-inhabited with at least some
probability pr by s@ℓ = 0 → P≥pr [trueU(s@ℓ > 0)].

It is also possible to study the relation within a model between the size of the initial
population and the probability of extinction of the population, by checking properties of
the form s@ℓ ≥ m→ P≥pe [trueU(s@ℓ = 0)] or to explore the dynamics between two
(or more) competing populations s and s′. As an example, expressing that, within the
next 20 years with some high probability, members of the population s will outnumber
the members of population s′: P≥p[trueU(

∑
ℓ∈Loc s

′@ℓ ≤
∑

ℓ∈Loc s@ℓ)].
PRISM also enables to take a more quantitative approach for model checking PCTL

properties: it supports the verification of the constructs Pmin=?[ϕ] and Pmax=?[ϕ] via
which the minimum and maximum probabilistic of satisfying ϕ are computed.

Steady-state behavior. PRISM also supports reasoning about the steady-state behavior
of a model, that is, the behavior in the long-run or when an equilibrium is reached [8].
Steady-state properties are only available for discrete-time and continuous-time Markov
chains. These properties are expressed by Sbound[prop]. Such a property is true in
a state s of a discrete-time or a continuous-time Markov chain if, starting from s,
the steady-state (long-run) probability of being in a state which satisfies the (boolean-
valued) property prop, meets the bound bound. For example, the steady-state property
Sbound[s@2 = 4] expresses that the long-run probability that there will be 4 individuals
of species s at location 2 meets the bound.

Rewards. PRISM models can also be augmented with information about rewards: It
is possible to assign a reward (a positive real number) to any command or state of
a PRISM model. Every time a command is executed or a state is visited, the rewards
associate with the command or state is accumulated. It is then possible to reason about
reward-based properties for discrete-time Markov chains, by extending the logic PCTL
with the following additional operators [1]:

R◃▹r[C
≤k] | R◃▹r[I

≤k] | R◃▹r[FΦ] | R◃▹r[S]

where ◃▹∈ {<,≤,≥, >}, r ∈ R≥0, k ∈ N and Φ is a PCTL formula. The R operator
defines properties about the expected value of rewards. The formula R◃▹r[ψ], where ψ
denotes one of the four possible operators in the grammar above, is satisfied in a state
s if, from s, the expected value of reward ψ meets the bound ◃▹ r. Operator C≤k refers
to the reward accumulated over k time steps; I≤k the state reward at time instant k; FΦ,

the reward accumulated before a state satisfying Φ is reached; and S, the long-run rate
of reward accumulation. Properties of the form R=?[ψ] means “what is the expected
reward for operator ψ?”.

4 A case study in PRISM

In this section, we apply our methodology for the simulation and model checking of
PALPS systems using the PRISM tool. As a case study we consider a variation of the
system in Example 1, Section 2.4, which was also considered in [31] and can thus serve
as a benchmark for studying the effect of applying policies on systems and, in particular
the degree by which policies reduce the state space of a PRISM model. The variation we
hereby consider, as we can see below, is that the order of dispersal and reproduction is
not fixed: the two activities can take place in an arbitrary order.

In our model we will assume a lattice of locations of size n × n (we will consider
n = 4, 9, 16). We assume periodic boundaries conditions so that the opposite sides of
the grid are connected together. Then, the PALPS definition of an individual takes the
following form:

P
def
= disperse.P1 + reproduce.P2

P1
def
= •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.cond (s@myloc = 1� P3; true�

√
.P)

P3
def
= rep.(p :

√
.P ⊕ (1− p) : rep.

√
.P)

P2
def
= cond (s@myloc = 1� P4; true� P5)

P3
def
= rep.(p :

√
.P5 ⊕ (1− p) : rep.

√
.P5)

P5
def
= •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.

√
.P

The PRISM encoding of the system follows the translation presented in Section 3.
We performed some obvious optimizations in order to reduce the size of our model. All
the tests were performed on a G46VW Asus laptop with an Intel i5 2.50 GHz processor
and 8 GB of RAM. We ran the tests under Linux Ubuntu 13.04 (Kernel 3.8.0 17), using
PRISM 4.0.3 with the MTBDD engine for model checking and CI method for simulation,
and Java 7.

As a first experiment we explored and compared the effect of applying policies
on the state space of the system in question. Specifically, individuals in the system
may engage in two activities: reproduction and dispersal. Let us assume an ordering of
these two activities so that reproduction follows dispersal. This gives rise to the policy
σ = {(τrep,ℓ,s, τgo,ℓ,s), (reproduceℓ,s,disperseℓ,s) | ℓ ∈ Loc}.

In Table 5 we summarize the results we obtained in our experiments. In the models
we fixed p = 0.4. We may observe that applying policy σ has resulted in a significant
reduction in the size of the state spaces by a factor of 8 on average(see cases No policy
and Policy σ). A further reduction was achieved by extending our policy in a manner
related to the PRISM model: in PRISM each individual is modeled as a discrete module.

Thus given an activity of two individuals two distinct executions may arise depending
on the order in which the individuals execute the activity. However, we may observe
that these two executions both lead to equivalent final states, thus, it is sufficient to
consider only one of them. To take this into account, we extended policy σ so as to
enforce an order on individuals. That is, we require that individuals execute actions in
an increasing order in terms of their identifier. This extended policy results in a further
reduction of the state space by about 20%.

Case study Number of Number of Construction RAM

size States Transitions time (sec.) (GB)
No policy [31]

3 PALPS individuals 130397 404734 8 0.5
4 PALPS individuals 1830736 7312132 101 1.9

Policy σ
3 PALPS individuals 27977 64282 3 0.3
4 PALPS individuals 148397 409342 10 0.7

Extended policy
3 PALPS individuals 20201 41602 3 0.3
4 PALPS individuals 128938 310393 9 0.6

Table 5. Performance of building probabilistic models in PRISM with and without policies.

As a second experiment, we attempted to determine the limits for simulating PALPS
models. We constructed PRISM models with various numbers of modules of active and
inactive individuals and we run them on PRISM. In Table 6, we summarize the results.
It turns out that for models with more than 5000 individuals simulation requires at least
12 hours (which was the time limit we set for our simulations).

Individuals File Size (MB) RAM (GB) Simulation Time (s)
10 0.1 0.18 1

100 0.4 0.3 8
500 2.0 0.5 45
1000 4.2 1.0 300
1500 6.2 0.7 454
2000 8.2 0.9 820
5000 20.1 2.0 > 12 hours
10000 44.1 3.4 > 12 hours

Table 6. Performance of simulating probabilistic systems in PRISM.

Subsequently, we looked into the restriction imposed by our assumption of bounded
replication. In particular, this restriction may lead to deadlocks when an active individ-
ual attempts to reproduce but no inactive module is available for synchronization. To

explore this, we used the simulation environment of PRISM and searched for deadlocks
by repeating 100 simulations of the model of maximum path length 1000 time steps.
Although, this procedure is not complete, we may consider it sufficient as it looks into a
fairly large number of life cycles of the population. In Table 7 we summarize the results
obtained.

Active individuals Inactive individuals Deadlock (x, y, z)

3 18 (No,Yes,Yes)
4 24 (No,Yes,Yes)
5 30 (No,Yes,Yes)
6 36 (No,Yes,Yes)
7 42 (No,No,Yes)
8 48 (No,No,Yes)
9 56 (No,No,Yes)
10 60 (No,No,No)

Table 7. Occurrence of deadlock in various instances of the model. The values (x, y, z) refer to
the presence of deadlock in the case of 4 locations (x), 9 locations (y), and 16 locations (z).

In addition to simulating models in PRISM, we also took advantage of the model
checking capabilities of PRISM and, in particular, we checked properties by using the
model-checking by simulation option, referred to as confidence interval CS simulation
method (see [1] for more details). We considered several instances of our model con-
sisting of n active individuals, 6 × n inactive individuals and l locations for various
values of n and l and we specified to the tool the options of using 100 samples and a
confidence interval of 0.01.

The property we experimented with is R =?[C≤k]. This property is a reward-based
property that computes the average reward accumulated within the first k execution
steps of the model. To check this property, it is necessary to associate rewards with
actions of interest within a model. We chose to assign rewards to (1) the clock action
and (2) the reproduction actions so as to compute the average number of clock ticks
and reproductions that take place within k execution steps of a model. For example,
for assigning rewards to the activity of reproduction of the module P1, that is, the first
active individual, the reward structure is defined as follows:

rewards "repP1"
[rep1_n] true : 1;
...
[rep1_n+m] true : 1;
endrewards

The value of k for the considered number of execution steps was fixed to 50× (n+
m), where n +m is the total number of individuals (active and inactive) of the model
under consideration. In this way, we enabled the model to run on average 50 steps per
individual. Figures 3(a) and 3(b) summarize the obtained results.

(a) (b)

Fig. 3. Average number of (a) time steps in PRISM to simulate one time unit in PALPS and (b)
reproductions of an individual per time unit.

As another experiment, we computed the percentage of active individuals at the end
of the simulation. This is done by verifying the reachability property “eventually, the
number of individuals is equal to s” for different values of s, where n ≤ s ≤ m+n. We
performed this analysis for both our model with policy σ but also in the variation of our
model where the order of the activities of dispersal and reproduction were swapped:

σ′ = {(dispersalℓ,s, reproductionℓ,s), (τgo,ℓ,s, τrep,ℓ,s) | ℓ ∈ Loc}

The results are presented in Fig. 4(a) (policy σ) and Fig. 4(b) (policy σ′). The results
show that the percentages are somewhat higher under the σ′ policy, especially in the
case of the large grid (9 locations) because the bigger the grid the higher the possibility
of reproduction and σ′ allows individuals to reproduce sooner.

(a) (b)

Fig. 4. Percentage of active individuals at the end of the simulation with (a) policy σ and (b)
policy σ′.

Consequently, we redeveloped our model of the Varroa mite according to the de-
scription presented in [35]. In contrast to Example 1, the new model features mortality.
Specifically, the new model has two parameters: b the offspring size and p the probabil-
ity to survive before breeding. Each mite begins its life by being exposed to death and it
survives with a probability p. In case of survival, it disperses to a new location. If it has
exclusive use of the location then it produces an offspring of size b and it dies. If the

location is shared with other mites then all mites die without reproducing. As before,
we model space as a lattice with periodic boundary conditions and the probability of
dispersal from a location to any of its four neighbors equal to 1/4. As in the previous
example, in our system we employed the policy specifying that the process of dispersal
precedes reproduction. Formally, the behavior of a mite is defined as follows:

P
def
= p:P1 + (1− p):

√
.0

P1
def
= •

∑
ℓ∈Nb(myloc)

1

4
: go ℓ.cond (s@myloc = 1� P2; true�

√
.0)

P2
def
= repb.

√
.0 where repb def

= rep...rep︸ ︷︷ ︸
b times

For this model we again checked properties by using the model-checking by simu-
lation option. The property we experimented with is R =?[I = k]. This property is
a reward-based property that computes the average state instant reward at time k. We
were interested to study the expected size of the population. For this, we associate to
each state a reward representing this size. In our experiments, we varied the size of the
initial population (i), while the probability of surviving (p) and the offspring size (b)
were fixed to p = 0.9 and b = 3, and the lattice was of size 4 × 4. The number of idle
processes was fixed to n× b− i, which is sufficient to avoid deadlocks. The results of
the experiments, shown in Fig. 5, demonstrate a tendency of convergence to a stable
state and an independence of the initial population for i > 8.

Fig. 5. Expected population size vs simulation time for different initial sizes of the population.

We also analyzed, for this model, the effect of the parameters b and p on the evolu-
tion of the average total number of individuals through time, with an initial population
of 1 individual, as shown in Fig. 6 and Fig. 7. The chosen values for p and b were
selected so that they are close to the estimates of the parameters of the Varroa mite,
namely, b = 3 and p = 0.9. Finally, we note that the results may also be applicable
to other species that follow the same, so-called scramble-contest behavior such as the
bean bruchid that attacks several kinds of beans.

Fig. 6. Expected population size vs simulation time for different offspring sizes, for p = 0.9 and
i = 1.

Fig. 7. Expected population size vs simulation time for different probabilities of survival, for
b = 3 and i = 1.

5 Conclusions

In this paper we have extended the process calculus PALPS with the notion of a policy.
A policy is an entity that is defined externally to the process-calculus description of an
ecological system in order to impose an ordering between the activities taking place
within a system as required for the purposes of the analysis. Furthermore, we have
described a translation of PALPS with policies into the PRISM language. This encoding
can be employed for simulating and model checking PALPS systems using the PRISM
tool. We experimented with both of these capabilities and we have illustrated types of
analysis that can be performed on PALPS models. We have also contrasted our results
with those obtained for the same example in our previous work [31]. We have concluded
that applying policies can significantly reduce the size of the model thus allowing to
consider larger models. For instance, in the example we considered, the state space of
the model was reduced by a factor of 10.

As future work, we intend to investigate further approaches for analysis of MDPs
that arise from the modeling of population systems. One such approach involves the
PRISM tool and concerns the production of PRISM input: we intend to explore alterna-
tives of producing such input possibly via constructing and providing PRISM directly
the Markov decision process associated with a PALPS system. We expect that this will
result in smaller state spaces than those arising via our PALPS-to-PRISM translation.

Furthermore, we would like to explore other directions for reducing the state-space of
PALPS models e.g. by enhancing the semantics of PALPS to enable a more succinct pre-
sentation of systems especially in terms of the multiplicity of individuals, as well as
defining a symbolic semantics which applies a symbolic treatment of environments.

Another direction that we are currently exploring is the application of our method-
ology to new and complex case studies from the local habitat and the exploration of
properties such as extinction (e.g., the expected time until extinction), persistence (e.g.,
the long-term average of the number of sites occupied at a given time) and spatial in-
dices (e.g., the correlation among nearby locations in space, patch shape analysis and
the number of subpopulations in a spatially dispersed metapopulation) similarly to [34].

Finally, an interesting future research direction would be extend the work of [23]
towards the development of mean-field analysis to represent the average behavior of
systems within a spatially-explicit framework.

References

1. Online PRISM documentation. http://www.prismmodelchecker.org/doc/.
2. M. Antonaki. A probabilistic process algebra and a simulator for modeling population sys-

tems. Master’s thesis, University of Cyprus, 2012.
3. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and G. Pardini. Spatial calculus of looping

sequences. Theoretical Computer Science, 412(43):5976–6001, 2011.
4. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and A. Troina. A calculus of looping se-

quences for modelling microbiological systems. Fundamenta Informaticae, 72(1-3):21–35,
2006.

5. L. Berec. Techniques of spatially-explicit individual-based models: construction, simulation,
and mean-field analysis. Ecological Modeling, 150:55–81, 2002.

6. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Modelling metapopulations with stochas-
tic membrane systems. BioSystems, 91(3):499–514, 2008.

7. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. An analysis on the influence of network
topologies on local and global dynamics of metapopulation systems. In Proceedings of
AMCA-POP’10, pages 1–17, 2010.

8. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proceedings of FSTTCS’95, LNCS 1026, pages 499–513. Springer, 1995.

9. L. Bioglio, C. Calcagno, M. Coppo, F. Damiani, E. Sciacca, S. Spinella, and A. Troina. A
Spatial Calculus of Wrapped Compartments. CoRR, abs/1108.3426, 2011.

10. L. Cardelli. Brane calculi - interactions of biological membranes. In Proceedings of
CMSB’04, LNCS 3082, pages 257–278. Springer, 2005.

11. L. Cardelli and R. Mardare. Stochastic Pi-Calculus Revisited. Technical report, Microsoft
Research, Cambridge, UK, 2012.

12. M. Cardona, M. Colomer, A. Margalida, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and
D. Sanuy. A P system based model of an ecosystem of the scavenger birds. In Proceed-
ings of WMC’09, LNCS 5957, pages 182–195. Springer, 2009.

13. M. Cardona, M. A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. J. Pérez-Jiménez,
and D. Sanuy. A computational modeling for real ecosystems based on P systems. Natural
Computing, 10(1):39–53, 2011.

14. Q. Chen, F. Ye, and W. Li. Cellular-automata-based ecological and ecohydraulics modelling.
Journal of Hydroinformatics, 11(3/4):252–272, 2009.

15. F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and analysis of
biological systems. Theoretical Computer Science, 410(33–34):3065–3084, 2009.

16. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in Process Algebras. Technical report,
Langley Research Center, NASA, USA, 1999.

17. R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based transition systems for
stochastic process calculi. In Proceedings of ICALP (2), LNCS 5556, pages 435–446.
Springer, 2009.

18. V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated verification techniques
for probabilistic systems. In Proceedings of SFM’11, LNCS 6659, pages 53–113. Springer,
2011.

19. S. C. Fu and G. Milne. A flexible automata model for disease simulation. In Proceedings of
ACRI’04, LNCS 3305, pages 642–649. Springer, 2004.

20. L. R. Gerber and G. R. VanBlaricom. Implications of three viability models for the conser-
vation status of the western population of steller sea lions (eumetopias jubatus). Biological
Conservation, 102:261–269, 2001.

21. S. Gilmore and J. Hillston. The PEPA workbench: A tool to support a process algebra-based
approach to performance modelling. In Computer Performance Evaluation, pages 353–368,
1994.

22. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
23. C. McCaig, R. Norman, and C. Shankland. From individuals to populations: A mean field

semantics for process algebra. Theoretical Computer Science, 412(17):1557–1580, 2011.
24. R. Milner. A Calculus of Communicating Systems. Springer, 1980.
25. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1 and 2. Informa-

tion and Computation, 100:1–77, 1992.
26. G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model Checking Probabilistic and Stochas-

tic Extensions of the π-Calculus. IEEE Transactions on Software Engineering, 35(2):209–
223, 2009.

27. G. Pardini. Formal Modelling and Simulation of Biological Systems with Spatiality. PhD
thesis, University of Pisa, 2011.

28. R. G. Pearson and T. P. Dawson. Long-distance plant dispersal and habitat fragmentation:
identifying conservation targets for spatial landscape planning under climate change. Biolog-
ical Conservation, 123:389–401, 2005.

29. M. J. Pérez-Jiménez and F. J. Romero-Campero. A study of the robustness of the egfr sig-
nalling cascade using continuous membrane systems. In Proceedings of IWINAC’05, pages
268–278, 2005.

30. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P-systems. Jour-
nal of Foundations of Computer Science, 17(1):183–204, 2006.

31. A. Philippou, M. Toro, and M. Antonaki. Simulation and Verification for a Process Calculus
for Spatially-Explicit Ecological Models. Accepted to appear in the Scientific Annals of
Computer Science.

32. G. Păun. Computing with Membranes (P Systems): An Introduction. In Current Trends in
Theoretical Computer Science, pages 845–866. World Scientific, 2001.

33. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAmbients: an abstrac-
tion for biological compartments. Theoretical Computer Science, 325(1):141–167, 2004.

34. G. D. Ruxton and L. A. Saravia. The need for biological realism in the updating of cellular
automata models. Ecological Modelling, 107:105–112, 1998.

35. D. J. T. Sumpter and D. S. Broomhead. Relating individual behaviour to population dynam-
ics. Proceedings of Royal Society B: Biological Sciences, 268(1470):925–932, 2001.

36. C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Computing,
6:536–564, 1994.

