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Abstract

In this work we consider the communication over a wireless link, between a sender and a receiver, being disrupted
by a jammer. The objective of the sender is to transmit as much data as possible to the receiver in the most efficient
way. The data is sent as the payload of packets, and becomes useless if the packet is jammed. We consider a jammer
with constrained power, defined by parameters ρ and σ, which represent the rate at which the adversary may jam
the channel, and the length of the largest burst of jams it can cause, respectively. This definition translates to the
Adversarial Queuing Theory (AQT) constraints, typically used for packet arrivals.

We propose deterministic algorithms that decide the length of the packets sent in order to maximize the goodput
rate; i.e., the amount of useful payload successfully transmitted over time. To do so, we first define and study a static
version of the problem, which is used as a building block for the dynamic problem. We start by assuming packets
of the same length and characterizing the corresponding quasi-optimal length. Then, we show that by adapting the
length of the packets, the goodput rate can be improved. Hence, we develop optimal adaptive algorithms that choose
the packet lengths depending on the jams that have occurred up to that point in time, in order to maximize the total
payload transmitted successfully over a period T in the presence of up to f jams.
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1. Introduction

Motivation. Transmitting data over wireless media in a fast and reliable way, has been attracting a lot of attention
from the research community for quite some time now [3, 7, 11, 12, 15, 20, 24, 25, 28, 29, 30], and continues to
increase its popularity, especially due to the increment of usage of mobile devices (e.g., smart phones, tablets). One
of the many challenges of wireless communication, depending on the specific model and applications, is to cope with
disruptions, especially when they are caused intentionally, e.g., by malicious jamming devices. Some of the research
efforts already done in addressing this challenge, have looked in different assumptions and constraints (e.g.,[4, 5, 6,
13, 16, 20, 23, 24, 25, 28]) and will be further discussed in the Related Work part of this section.

In our work we look at a wireless communication over a single channel between a sender and a receiver, being
“watched” and disrupted by a malicious, adversarial jammer. The sender’s goal is to fully transmit over the channel as
much data possible in the most efficient way, despite the jams. More precisely, the sender has a potentially unbounded
amount of data to be transmitted. Each packet sent contains a header of fixed size h and some payload whose size, l,
depends on the scheduling algorithm used. Note that this payload counts towards the total size of the actual data to be
transmitted. For simplicity and without loss of generality we assume that h = 1. We also consider constant bit rate
for the channel (and hence constant bandwidth), which means that the transmission time of each packet is proportional
to its size (in particular, a packet of size l + 1 takes l + 1 time units to be transmitted in full). What is more, when a
packet is jammed, it needs to be retransmitted; hence we assume a feedback mechanism that informs the sender when
a jam occurs. Our objective is to define optimal scheduling algorithms that decide the length of the packets to be sent,
in particular their payload, so that they maximize the amount of data transmitted in time.

We assume that the adversary has complete knowledge of the packet scheduling algorithm and it decides on how
to jam the channel dynamically. However, the jamming power of the adversary is constrained by two parameters,
ρ and σ, whose values depend on technological aspects. Parameter ρ represents the rate at which the adversary can
jam the channel and σ the largest size of a burst of jams that can be caused. More precisely, parameter σ represents
the maximum number of “error tokens” available for the adversary to use at any point in time, and ρ represents the
rate at which new error tokens become available (one at a time). Each error token models the ability of the adversary
to jam one packet. This adversarial model could represent a jamming entity with limited resource of rechargeable
energy, e.g., malicious mobile devices [1, 2] or battery-operated military drones [14, 18]. In these cases, σ represents
the capacity of the battery (in packets that can be jammed) and ρ the rate at which the battery can be recharged (for
instance, with solar cells). We call this model dynamic, due to the unpredictability and dynamic nature of the adversary
and the channel jams.

To evaluate the scheduling algorithms considered, we use the goodput rate as our efficiency measure; successful
transmission rate achieved. Under this model, we first show upper and lower bounds on the transmission time and
goodput rate when the sender sends packets of the same length throughout the execution (uniform case), not taking
into account the history of jams. The interesting question then is whether this bound can be surpassed by adapting the
packet length depending on the channel jams. Considering first the case of σ = 1, we propose an adaptive scheduling
algorithm that changes the packet length based on the feedback on jammed packets, and show that it can achieve better
goodput and transmission time with respect to the uniform case, for most values of ρ. However, the analysis technique
used for the case σ = 1 turned out not to be easily generalized for cases where σ > 1. Devising an optimal solution
for the overall problem seems to be a challenging task.

In order to better understand the above problem and lay the groundwork for obtaining its optimal solutions, we
also consider a simpler version of the problem, for which we define a corresponding model, called static. In particular,
we focus on a specific time interval of length T , and instead of assuming that new error tokens are continuously
arriving we assume a fixed number of error tokens f . The sender’s objective now is to correctly transmit the maximum
amount of data, considering the jamming power of the adversary. The adversary is constrained only by parameter f ; the
maximum number of errors (packet jams) it can introduce in the corresponding interval T (all tokens are available from
the very beginning of the interval). Hence, given T and f , we want to maximize the total useful payload transmitted
within the interval of interest.1

1Since we assume that the transmission time of each packet is equal to its length, it follows that T is an absolute upper bound on the useful
payload transmitted.
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We then use the static model as a building block for the solution of the dynamic one. More details on the two
models and our assumptions are detailed in Section 2.

In a previous work [4], we studied the impact of adversarial errors on packet scheduling, focusing on the long term
competitive ratio of throughput, named relative throughput. We explored the effect of feedback delay and proposed
algorithms that achieve close to optimal relative throughput under worst-case errors, and adversarial or stochastic
packet arrivals. Part of the motivation to this work, was the question whether the upper bound of the relative throughput
could be exceeded when the power of the adversary is constraint, one of the main differences with this work. Another
difference is that in the current work the packet sizes are chosen by the sender, whereas in the previous one they were
given. And last but not least, in [4], jammed packets were not retransmitted; the objective was to route packets as fast
as possible and not strive to have each packet transmitted. In the current work, the choice of the packet size is precisely
the most critical part from the side of the sender. Thus, we focus in devising scheduling algorithms for the decision of
packet length to be used and conduct worst-case analysis for the efficiency measures.

Contributions. In this work, we first introduce our dynamic, AQT-based adversarial jamming model in wireless net-
works. AQT has been widely used for restricting packet arrivals in similar settings (see related work below). However,
not much research has been done that considers the possibility of exploring its effects in the intent to “damage” a net-
work. We compare our model with the few that have considered similar approaches in the related work below. As al-
ready mentioned, our approach of constrained adversarial jamming could be used to model battery-operated malicious
devices that have bounded battery capacity and specific recharging rate. In Section 2, we formalize the constrained
adversarial jamming model we consider, which we call dynamic, as well as the static version of the model (focusing
on their differences), that is used as a building block to the main optimization problem in the dynamic model. To do
that, we propose our approach in Section 2.3, explaining how the goodput rate of the optimal algorithm in the static
model will be the goodput rate for the algorithm described for the dynamic model.

We then present the limitations these models impose on the efficiency of scheduling policies, focusing on the
goodput rate as our main performance measure. More precisely, we start by studying the static model in Section 3,
where we consider the case when an algorithm, S-UNI, is restricted in sending packets of uniform length (this could
be due to limitations in the communication protocol or the sender’s specification). We compute the quasi optimal2

packet size p∗ and show that the achievable goodput rate becomes G(T,f )(S-UNIp∗) ≈ (1−
√
f /T )2.

Next, we devise adaptive scheduling algorithms; ones that change the packet length based on the feedback on
jammed packets received, in order to see whether this goodput rate can be exceeded. We start by first considering
the case of f = 1 (Section 4). We present adaptive algorithm S-DEC, and show that it achieves a greater goodput
for T > 2

7−3
√

5
≈ 6.8541. We continue by devising a new algorithm, S-OPT(T, 1) and prove its optimality. More

precisely, we show that the algorithm achieves optimal useful payload of i−1
i T −

i+1
2 + 1

i , where i is the integer such

that T ∈
[

(i−1)i
2 + 1, i(i+1)

2 + 1
)

. Algorithm S-OPT(T, 1) chooses the length p of the first packet to be transmitted
as a function of T . If the packet is jammed then it transmits a second packet of length T − p, which is now guaranteed
not to be jammed. If the first packet goes through, then the algorithm is invoked recursively as S-OPT(T − p, 1).

Then, we generalize algorithm S-OPT(T, 1) into algorithm S-OPT(T, f ) and show that it obtains static-optimal
useful payload for any f (Section 5). Algorithm S-OPT(T, f ) is essentially a recursive algorithm that also begins by
choosing length p of the first packet to be transmitted as a function of T (a different function from that of S-OPT(T, 1)).
If the packet is jammed, the adversary (unlike in the case of f = 1) still has error tokens that it can use. Therefore,
instead of sending a packet that spans the rest of the interval, S-OPT(T, f ) makes the recursive call S-OPT(T−p, f−1).
If the packet is not jammed, then it makes a recursive call to S-OPT(T−p, f ). Although the above algorithmic approach
is quite natural, the choice of the length p of the packet to be sent as well as the algorithm’s analysis of optimality, are
nontrivial.

In Section 6 we analyze the uniform packet scheduling for the dynamic model, showing how it is related to the
static one. We conclude in Section 7, where we summarize our results and discuss the general algorithmic approach
proposed in subsection 2.3 (using the optimal algorithm of the static model to solve the scheduling problem in the
dynamic model). Finally we comment on some open questions and future work. However, emphasizing on our results,

2We use the term “quasi optimal” because our analysis returns a packet length that is a real number, and the optimal length has to be an integer.
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we show that giving guarantees in this setting, even when dealing with the simplest scenarios, is quite complex.

Related work. Several studies have investigated the effect of jamming in wireless channels and throughput maxi-
mization. Two exhaustive surveys we recommend the reader to see include the work of Pelechrinis et al. [20] where
they present a detailed survey of the Denial of Service attacks. They explain the various techniques used to achieve
malicious behaviors and describe methodologies for their detection as well as for the network’s protection from the
jamming attacks. The second one [13], is the work of Dolev et al., where they present several existing results in adver-
sarial interference environments in the unlicensed bands of the radio spectrum, discussing their vulnerability. Let us
also present some examples of more specific works done in the are. Gummandi et al. [17] consider 802.11 networks
disrupted by radio frequency interference and show that they are surprisingly vulnerable. In order to cope with these
vulnerabilities they propose and analyze a channel hopping design. Tsibonis et al. [29] studied the scenario of schedul-
ing transmissions to multiple users over a wireless channel with time-varying connectivity. Assuming saturated packet
queues, they then proposed an algorithm based on the weighted sum of the throughput of the channel. Thuente et
al. [28] studied the effects of different jamming techniques in wireless networks and the trade-off with their energy
efficiency. Their study includes from trivial/continuous to periodic and intelligent jamming (taking into consideration
the size of packets being transmitted).

On a different flavor, Awerbuch et al. [6] designed a medium access (MAC) protocol for single-hop wireless
networks that is robust against adaptive adversarial jamming (the adversary knows the protocol and its history and
decides to jam the channel at any time) and requires only limited knowledge about the adversary (an estimate of
the number of nodes, n, and an approximation of a time threshold T ). One of the differences with our work is that
the adversary they consider is allowed to jam (1 − ε)-fraction of the time steps. On a later work [24], Richa et
al. explored the design of a robust MAC protocol that takes into consideration the signal to interference plus the
noise ratio (SINR) at the receiver end. In [25] they extended their work to the case of multiple co-existing networks,
proposing a randomized MAC protocol that guarantees fairness between the different networks and efficient use of the
bandwidth. In [23], Richa et al. considered an adaptive adversarial jammer that is also reactive; one that is allowed
to make a jamming decision based on the actions of the nodes at the current step. This, is similar to the adversary we
consider in this work. However, they consider a different constraint on jamming: given a time period of length T , the
adversary can jam at most (1 − ε)T of the time steps in that period. In our case, the adversary, within a time period
T can cause f channel jams, where f does not correspond to a fraction of time, but on the number of packets it can
corrupt. Another difference is that they consider n nodes transmitting over the channel and hence they have to deal
with transmission collisions as well. What is more, their objective is to optimize throughput over the non-jammed time
periods, whereas we include the whole execution. In a more recent work of Ogierman et al. [19], the authors introduce
a new SINR model capturing various interference phenomena and propose a distributed MAC protocol that achieves
constant competitive throughput. Nonetheless, the main differences with our work are similar to the ones mentioned
for their previous works.

Gilbert et al. [16] worked on a theoretical analysis of the damage that can be introduced by a tiny malicious entity
having limited power in the communication delay between two nodes. In particular, the nodes share a time-slotted
single-hop wireless ratio channel and the malicious entity wishes to delay their communication. However, it can only
broadcast a message up to β times, which is similar to the restriction imposed in our work, but our model can be viewed
as a generalization of this restriction by allowing recharging. Nonetheless, the setting and objectives of their work are
different. They first show a bound on the number of rounds that the malicious node can delay the communication and
then study its implication on an n-node general problem, such as reliable broadcast and leader election.

Schmid and Wattenhofer [26, 27] look at TCP transmissions and assume a network where congestion varies with
time while packets are lost at random due to bit rate errors in the wireless links. The authors consider two models for
the congestion changes: dynamic and bursty. The second model uses an approach based on network calculus which is
similar to our approach, but unlike our work they use it in order to define the congestion changes of the network and
hence the available bandwidth and maximum transmission rate at any time (slotted time is assumed). Recall that we
assume a constant bit rate at all times, hence the nature of the problem is different. Furthermore, unlike our approach,
they perform competitive analysis.

However, none of the models studied considers an AQT modeling of the power of the adversarial entity. Ad-
versarial queuing has been used in wireless networks as a methodology for studying their stability under worst case
scenarios, removing the stochastic assumptions usually made for the generation of traffic. It concerns the arrival pro-
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cess of packets in the system and it has been introduced by Borodin et al. [8] as a well defined theoretical model since
2001. A variety of works has then followed, using AQT in different network settings, such as on multiple access
channels [11, 12] and routing in communication networks [9, 10]. We associate our constrained type of adversarial
channel jams with the AQT model for the arrival process of packets in the following way. Classical AQT considers a
window adversary that accounts packets being injected within a time window w in such a way that they give a total
load of at most wr at each edge of the paths they need to follow, where w ≥ 1 and r ≤ 1. In our channel jams,
for every window of duration 1/ρ, there is exactly one new error token available for the adversary to use. In a long
execution, considering for example a time interval T > 1/ρ, there will be up to Tρ new error tokens available to the
adversary.

Last but not least, as mentioned in Section 1, our adversarial jammer has limited sources of energy and can be
used to model, for example, military drones or mobile jammers. Drones or Unmanned Aerial Vehicles (UAV) are at the
peak of their development. As an upcoming technology that is rapidly improving, it has already attracted the colossi of
industry, like Google or Amazon, to invest in UAV research and development, creating even commercial models. There
have already been a few research works [14, 18] but the area is still being studied; the work in [14] focuses on UAV’s
risk analysis and the work in [18] focuses in analyzing cellular network coverage using UAV’s and software defined
radio. Regarding mobile jammers, in the recent years, many companies have made available battery-operated 3G/4G,
WiFi or GPS mobile jammers (e.g., [1, 2]); this market can only increase, as wireless communication is becoming the
dominating communication technology.

2. Model

In this section we first formalize the dynamic model, the main model considered in this work, and then we highlight
the differences with the static model, which is extensively used as a building block for the dynamic one.

2.1. Dynamic Model

Network setting. We consider a setting of a sending station (sender) that transmits packets to a receiving station
(receiver) over an unreliable wireless channel. We assume that the sender has enough data to transmit, covering any
interval length T , and follows some online scheduling [22, 21] in order to decide the lengths of the packets to be
sent in the transmission. The decisions need to be made during the course of the execution, taking into consideration
(or not) the channel jams. Each packet π consists of a header of a fixed predefined size h and a payload of length l
chosen by the algorithm. The payload represents the useful data to be sent across the channel and is to be chosen by
the sender. The total length of the packet is then denoted by p = h + l. For simplicity and without loss of generality
we use h = 1 throughout our analysis, and hence p = l + 1. (Note that l needs not be an integer.) Furthermore, we
consider constant bit rate for the channel, which means that the transmission time of each packet is proportional to its
length (i.e., a packet of size l + 1 takes l + 1 time units to be transmitted in full).

Packet failures. We model the unavailability of the channel to be controlled by the omniscient and adaptive adversary
(σ, ρ)-A, which is defined by its two “restrictive” parameters, ρ ∈ [0, 1] and σ ≥ 1 as follows. The adversary has a
token bucket of size σ where it stores “error tokens” and is initially full. From the beginning of the execution and up
to a time t, within interval T = [0, t], there will be bρT c such error tokens created, where ρ is the rate at which they
become available to the adversary. In other words, a new error token becomes available at times 1/ρ, 2/ρ, . . .. Note
that the values of the parameters are given to the adversary (they are not chosen by it) and it can only use them in a
“smart” way in order to control the packet jams in the channel. If there is at least one token in the bucket, the adversary
can introduce an error in the channel and jam the packet being transmitted, consuming one token. If the token bucket is
full (i.e., there are already σ error tokens in the bucket) and a new token arrives, then one token is lost. (This, models,
for example, the fact that a fully charged battery cannot be further charged.) As a worst case analysis, we consider
that the adversary jams some bit in the header of the packets in order to ensure their destruction. Therefore, adversary
(σ, ρ)-A defines the error pattern E as a collection of jamming events on the channel, jamming the packet that is
being transmitted in that instant. Finally, we assume that parameters ρ and σ are known to the scheduling algorithm.
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Efficiency measures. For the efficiency of a scheduling algorithm, we look at the goodput rate, G; the ratio of the total
amount of payload successfully transmitted over time, despite the jams in the channel.

To be more precise, let us define the amount of payload successfully transmitted as useful payload. We denote the
useful payload of an algorithm ALG in a time interval T , under error pattern E, by UPT (ALG, E), and it is calculated
as the sum of payloads of the packets successfully transmitted in the interval. Since we make a worst-case analysis,
we actually calculate the worst useful payload of a fixed algorithm A as UPT (A) = minE∈E(ρ,σ) UPT (A,E), where
E(ρ, σ) is the set of all possible error patterns with parameters ρ and σ. We also define the optimal useful payload as
UP∗T = maxALG UPT (ALG). Now, when examining a period T in the execution of an algorithm ALG, under error
pattern E, its goodput rate is defined as GT (ALG, E) = UPT (ALG)/T and the optimal goodput as G∗ = UP∗T /T .

For simplicity, we use the shorter notations UP and G, when the algorithm used or the time interval considered,
respectively, are implied. We also overload the notation T to refer both to the interval and its length. Note finally, that
in most of our analysis we avoid using floors and ceilings in order to keep the readability of our results as simple as
possible for the reader. Nonetheless, this does not affect the correctness of our results since when being applied on
large enough time intervals and data, the “losses” become negligible.

Feedback mechanism. As a feedback mechanism, following [4], we assume that the sender receives instantaneous
feedback for a packet successfully received. We also assume that the notification packets cannot be jammed by the
errors in the channel because of their relatively small size. In particular, we consider notification / acknowledgement
messages sent for every packet that is received successfully. If such a message is not received by the sender, then it
considers the packet to be jammed.

2.2. Static Model

We now present the static model, focusing only on the differences it has from the dynamic one.

Packet failures. We assume that the channel jams are orchestrated by an omniscient and adaptive adversary, (T, f )-A.
However, it has a constrained number of jams it can cause in a given period. Specifically, for a time interval of length
T , T ≥ 1, it can cause up to f packet jams. Thus, given a parameter T , the adversary defines the error pattern E as
a set of up to f jamming events on the channel over that period, each given by a time instant in the period. As in the
dynamic model, for a worst case analysis we assume that the adversary jams some bit in the header of the packets in
order to ensure their destruction. We will sometimes use the special error pattern E = ∅ that corresponds to the case
in which the adversary causes no jamming. For a given T , we assume that f is known to the scheduling algorithm.

Efficiency measures. We consider the same performance measure as in the dynamic model; goodput rate, and use the
useful payload in order to calculate the exact amount of data successfully transmitted; this time for interval of length
T and f error tokens.

More formally, similar to the dynamic model, we denote by UP(T,f )(ALG, E) the useful payload (payload success-
fully received) when using scheduling algorithm ALG in an interval of length T against an adversary of power f that
uses error pattern E. Then, for a fixed algorithm A, its useful payload is UP(T,f )(A,E) = minE∈E(f ) UP(T,f )(A,E),
where E(f ) is the set of all possible error patterns with at most f jams. From this, we also define the optimal useful
payload as UP∗(T,f ) = maxA UP(T,f )(A). For simplicity, we use the shorter notation UP. This is done when the
algorithm used and the number of possible errors in the interval are implied.

The goodput rate is defined similarly, by simply dividing the useful payload by the length of the interval. More
precisely, when using scheduling algorithm ALG in an interval of length T against an adversary of power f that uses
error pattern E, its goodput rate is G(T,f )(ALG, E) = UP(T,f )(ALG, E)/T , and the optimal goodput is G∗(T,f ) =

UP∗(T,f )/T .

Feedback mechanism. As in the dynamic model, we assume instantaneous feedback. Nonetheless, observe that if
T ≤ f , then the adversary can jam all packets sent in the interval and no useful data will be received. Hence, we focus
only in time periods that are initially of length T > f .

We start with proving an absolute bound on the error rate with respect to the maximum packet length.
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Observation 1. Let c be the smallest packet size used by an algorithm (i.e., ∀p, p.len ≥ c). For any error rate ρ ≥ 1/c,
no goodput larger than zero can be achieved.

Proof: If the error rate is ρ ≥ 1/c, a new error token arrives during the transmission of any packet (recall that packets
are of size at least c). Hence, there are error tokens in the bucket at all times for the adversary to corrupt all packets
being transmitted. Using an error token every c time, is sufficient to keep the goodput at zero.

From this observation, it can be derived that algorithms that only use packets of length p.len ≥ 1/ρ are not
interesting.

2.3. Moving from the Static Model to the Dynamic Model

Our approach is to first analyze the static model, and then explore the way its solutions can be applied in the
dynamic model. In particular, we divide the executions of the continuous (dynamic) version of the problem into
successive intervals of length 1/ρ, and assume σ error tokens available at the beginning of each interval. Then these
intervals become instances of the static model, where T = 1/ρ and f = σ.

We therefore propose an algorithm ALGD, that uses the optimal solution of the static model, say algorithm A, to
solve the problem in the dynamic model, with parameters 1/ρ and σ.

Algorithm ALGD Description:
For every time interval Ti =

[
i
ρ ,

i+1
ρ

)
, where i = 0, 1, . . . , run A(1/ρ, σ).

Observation 2. Observe that, if the goodput of algorithm A is G(A), then the goodput of ALGD will also be
G(ALGD) = G(A). This is because the goodput per-interval will be repeated throughout the whole execution.

3. Uniform packets for the Static Model

Let us start by studying the static model, for the case when the algorithm is restricted in sending packets of equal
(uniform) length. This could be due to limitations in the communication protocol or the sender’s specification. We aim
to define a quasi-optimal algorithm S-UNI that schedules uniform packets taking into account the parameters of the
adversary. For that, we compute the quasi-optimal necessary packet length, p∗, that maximizes the minimum useful
payload considering time interval T and maximum number of errors f .
Note that the approximations below are due to floors and ceilings; these approximations get closer to equality as T f
grows.

Theorem 1. Let S-UNI use only uniform packets of length p. In an interval of length T and maximum number of
errors f , the optimal packet length for these algorithms, p∗, gives a useful payload

UP(T,f )(S-UNIp∗) = max
{ 1

b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
and thus a corresponding goodput rate

G(T,f )(S-UNIp∗) = max
{ 1

T b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

T d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
.

In fact, UP(S-UNIp∗) ≈ T + f − 2
√
T f and G(S-UNIp∗) ≈

(
1−

√
f /T

)2

.

Proof: Let us denote by n the number of uniform packets of length p = T
n sent in an interval of length T when the

adversary has f error tokens available. In the worst case, the adversary will use its error tokens to jam f packets in the
interval, and hence there will be at least n− f successfully received packets by the receiver by the end of the interval.
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Let us denote by S-UNIn and S-UNIp the same algorithm, that uses n uniform packets of length p. Recall that
each packet consists of the payload and a unit-size header. Its useful payload will then be UP(T,f )(S-UNIn) =

(n− f )
(
T
n − 1

)
. Deriving this expression with respect to n, we get

∂UP(T,f )(S-UNIn)

∂n
=

f T

n2
− 1,

which implies that UP(T,f )(S-UNIn) is maximized for n =
√
T f . What is more, the derivative is positive for n <

√
T f

and negative for n >
√
T f . This means, that the useful payload is strictly increasing on the left of n =

√
T f and

strictly decreasing on the right. From this, we get that (1) there is no other n that maximizes the useful payload, and
(2) since the number of packets has to be an integer value, the only two candidates for the optimal number of packets
n∗ are b

√
T f c and d

√
T f e. Hence the value of these two that maximizes the useful payload is the optimal number n∗.

Thus, the optimal useful payload is

UP(T,f )(S-UNIn∗) = (n∗ − f )
( T
n∗
− 1
)

= max
{ 1

b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
and the corresponding goodput rate

G(T,f )(S-UNIn∗) =
UP(T,f )(S-UNIn∗)

T

= max
{ 1

T b
√
T f c

(
b
√
T f c − f

)(
T − b

√
T f c

)
,

1

T d
√
T f e

(
d
√
T f e − f

)(
T − d

√
T f e

)}
,

as claimed.
From the optimal number n∗, and the fact that p∗ = T

n∗ , we get that p∗ ≈
√
T/f . Then, the optimal achiev-

able useful payload becomes UP(T,f )(S-UNIp∗) ≈ T + f − 2
√
T f and the corresponding optimal goodput rate,

G(T,f )(S-UNIp∗) ≈
(

1−
√
f /T

)2

, as also claimed.

4. Adaptive Algorithms for Static Model with f = 1

We now turn our attention to some adaptive algorithms; ones that change the packet sizes according to the jams
they have observed so far. Starting from the case of f = 1 we propose algorithms that achieve a goodput rate greater
than G∗(T,1)(S-UNI) ≈ (1−

√
1/T )2.

4.1. Algorithm S-DEC

The first algorithm we propose, that adapts the length of the packets sent, is called S-DEC and we show here that
for time intervals T large enough, for T > 2

7−3
√

5
to be exact, it achieves goodput rate greater than G(T,1)(S-UNI) ≈

(1−
√

1/T )2.

Algorithm S-DEC Description:
Each period starts by scheduling packets of decreasing length pi = Z − i for i = 0, 1, 2, 3 . . .. If a packet πj is
jammed during the period, this transmission sequence is stopped, and after πj , a single more packet is scheduled by
the algorithm whose length spans the rest of the period.

Theorem 2. Adaptive algorithm S-DEC, with Z = 1
2

(√
1 + 8T − 1

)
, achieves goodput G(S-DEC) = 1 −

1
2T

(
1 +
√

1 + 8T
)
. This value is larger than the upper bound for the uniform case, if T > 2

7−3
√

5
≈ 6.8541.
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Proof: There are two cases to be considered in a period:
(a) If the adversary jams a packet πj , the useless data sent in the period adds to Z + 1. This number comes from

the j headers of the packets sent before πj , plus the length pj = Z − j of the packet jammed, plus the header of
the last packet sent in the period (which cannot be jammed). Hence, in this case, the useful payload of the period is
T − (Z + 1).

Otherwise, (b) if no packet is jammed, the useless data sent in the period correspond only to the headers of the
packets sent. Then, if the last packet sent in the interval is πk, the useless data is k + 1, and the corresponding useful
payload is T − (k+1). The value Z is chosen so that the total length of the packets sent in this case is equal the length
of the interval. From this property,

∑k
i=0 pi = T, the value of Z must satisfy Z(k + 1)− k(k+1)

2 = T and hence

Z =
k

2
+

T

k + 1
. (1)

In a given period the choice of whether case (a) or (b) occurs is up to the adversary, since she can decide which
packet to jam, if any. This means that the useful payload achieved will be the minimum of the two cases, UP =
min{T − (Z+ 1), T − (k+ 1)}. Observe from this Eq. 1 that the length Z of the initial packet increases if the number
of packets k decreases. Additionally, it must hold that Z ≥ k and therefore UP is maximized when when Z = k.
Hence, the optimal k is the suitable solution of the equation k = k

2 + T
k+1 , which is k = 1

2

(√
1 + 8T − 1

)
= Z.

The useful payload achieved is then UP(S-DEC) = T −
(

1
2

√
1 + 8T − 1

2 + 1
)

= T − 1
2

(√
1 + 8T + 1

)
,

which is more than UP∗(S-UNI) = T · G(T,1)(S-UNI) = T
(

1 −
√

1/T
)

. The corresponding goodput is therefore

G(S-DEC) = UP
T = 1− 1

2T

(√
1 + 8T + 1

)
.

4.2. Algorithm S-OPT(T, 1): optimal for f = 1

Since the performance of algorithm S-DEC is only better than the uniform packet scheduling approach for a limited
range of intervals, i.e., T > 2

7−3
√

5
, we aim to improve the result given by S-DEC in the previous subsection, and

see whether a goodput rate that surpasses G(S-UNI) exists for time intervals T < 2
7−3
√

5
. In our effort to do so, we

develop the following adaptive algorithm, named S-OPT(T, 1), which we prove to be optimal for the static model, for
f = 1. (See the algorithm’s pseudocode in Alg. 1.) By doing so, we also hope to give an intuition to the reader on how
the optimal algorithm for any number of error tokens will work.

Algorithm 1 S-OPT(T, 1)

If T ∈ [1, 2) then
Send packet π with length p = T

else
Let i be the integer such that T ∈

[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
Let α = i− 2, and β = (i−1)i

2 − 1

Send packet π with length p = T+β
α+2 = T−1

i + i−1
2

If packet π is jammed then
Send packet with length p′ = T − p

else
Call S-OPT(T − p, 1)

Algorithm S-OPT(T, 1) is used in a time recursive fashion, with respect to the length of the interval of interest, T .
Its scheduling policy is as follows: It chooses the length p of the first packet to be transmitted as a function of T . If
the packet is jammed then it transmits a second packet of length T − p which is guaranteed not to be jammed. If the
first packet goes through, then the algorithm is invoked recursively as S-OPT(T − p, 1).

A detailed pseudocode for the algorithm is given as Algorithm 1. Let us fix the interval length T ≥ 1, and let
i be the integer such that T ∈

[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
, as described in the above pseudocode. Let us also define

9



parameters α = i − 2 and β = (i−1)i
2 − 1, packet length p = T+β

α+2 , and interval length T ′ = T − p. We first present
the following two lemmas that are used to show the optimality of Algorithm S-OPT(T, 1) in the static model.

Lemma 1. Interval length T ′ = T − p is such that T ′ ∈
[

(j−1)j
2 + 1, j(j+1)

2 + 1
)

for j = i− 1, where i is an integer
such that i ≥ 1.

Proof: Replacing the values of α and β in the calculation of T ′ = T − p,

T ′ =
(α+ 1)T − β

α+ 2
=

(i− 2 + 1)T −
(

(i−1)i
2 − 1

)
i− 2 + 2

=
(i− 1)T − (i−1)i

2 + 1

i
.

Now, using the fact that T ≥ (i−1)i
2 + 1, we have

T ′ ≥
(i− 1)

(
1 + (i−1)i

2

)
− (i−1)i

2 + 1

i
= · · · = (i− 1)(i− 2)

2
+ 1.

Similarly, using the fact that T < i(i+1)
2 + 1, we have

T ′ <
(i− 1)

(
1 + i(i+1)

2

)
− (i−1)i

2 + 1

i
= · · · = (i− 1)i

2
+ 1.

Setting j = i− 1 in both cases, we have T ′ ∈
[

(j−1)j
2 + 1, j(j+1)

2 + 1
)

as claimed.

Lemma 2. Let T ≥ 2 and assume that UP(T ′,1)(S-OPT) = αT ′−β
α+1 , where T ′ = T −p. Then, Algorithm S-OPT(T, 1)

achieves useful payload UP(T,1)(S-OPT) = (α+1)T−(β+α+2)
α+2 .

Proof: Since T ≥ 2, that Algorithm S-OPT(T, 1) schedules first a packet π with length p = T+β
α+2 . If π is jammed,

then a packet of length equal to the rest of the interval, i.e., T ′ = T − p, can be sent successfully, and hence the useful
payload will be UP(T,1)(S-OPT) = T − T+β

α+2 − 1 = (α+1)T−(β+α+2)
α+2 .

Otherwise, if π is not jammed, the useful payload is obtained as UP(T,1)(S-OPT) = p− 1 + UP(T ′,1)(S-OPT) =

p − 1 + αT ′−β
α+1 = p − 1 + α(T−p)−β

α+1 = (α+1)T−(β+α+2)
α+2 . In both cases, the useful payload is as claimed, which

completes the proof.

Theorem 3. Given an interval of length T ≥ 1, Algorithm S-OPT(T, 1) achieves optimal useful payload UP∗(T,1) =

i−1
i T −

i+1
2 + 1

i , where i is the integer such that T ∈
[

(i−1)i
2 + 1, i(i+1)

2 + 1
)

.

Proof: The proof is by induction on T . The base case is when T ∈ [1, 2), which implies that i = 1. In this case only
one packet is sent by S-OPT(T, 1), which spans the whole interval and can be jammed by the adversary. Observe that
in this case at most one packet can in fact be sent in the interval. This matches the claim that S-OPT(T, 1) achieves
optimal useful payload UP∗(T,1) = 0 in this case.

Let us now consider any interval length T ≥ 2, which implies i ≥ 2. Then, from Lemma 1, interval length
T ′ = T − p ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i − 1. By induction hypothesis, UP(T ′,1)(S-OPT) = UP∗(T ′,1) =

j−1
j T − j+1

2 + 1
j = αT ′−β

α+1 , and from Lemma 2 we have that UP(T,1)(S-OPT) = (α+1)T−(β+α+2)
α+2 = i−1

i T −
i+1
2 + 1

i .
To show that the useful payload achieved by S-OPT is optimal for this case T ≥ 2, consider an algorithm A that

follows one of the following approaches:
(a) First sends a packet π′ of length p′ > T+β

α+2 . We assume then that the adversary jams π′. The length of the rest of
the interval is T − p′ < T − T+β

α+2 . Hence the useful payload will be

UP(T,1)(A) < T − T + β

α+ 2
− 1 =

(α+ 1)T − (β + α+ 2)

α+ 2
= UP(T,1)(S-OPT).
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(b) First sends a packet π′ of length p′ < T+β
α+2 , p′ ≥ 1. Then the adversary does not jam π′. The rest of the interval

has length T − p′ = T ′ + (p− p′) > T ′. We consider two cases (from Lemma 1 no other case is possible):
Case (b).1: T − p′ = T ′ + (p − p′) ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i − 1. Then, by induction hypothesis,

UP∗(T ′+(p−p′),1) = j−1
j (T ′ + (p− p′))− j+1

2 + 1
j <

j−1
j T ′ − j+1

2 + 1
j + (p− p′) = UP∗(T ′,1) + (p− p′). Hence,

UP(T,1)(A) ≤ p′ − 1 + UP∗(T ′+(p−p′),1) < p′ − 1 + UP∗(T ′,1) + (p− p′)
= p− 1 + UP∗(T ′,1) = UP(T,1)(S-OPT).

Case (b).2: T − p′ = T ′ + (p− p′) ∈
[

(i−1)i
2 + 1, i(i+1)

2 + 1
)

. In this case,

UP(T,1)(A) ≤ p′ − 1 + UP∗(T−p′,1) = p′ − 1 +
i− 1

i
(T − p′)− i+ 1

2
+

1

i

<
i− 1

i
T − i+ 1

2
+

1

i
= UP(T,1)(S-OPT),

where the first equality follows from induction hypothesis, and the second inequality follows from the fact that p′ < i

(derived from p′ < T+β
α+2 , the definition of α and β, and the fact that T < i(i+1)

2 + 1).
Hence, in none of the two cases, neither (a) nor (b), Algorithm A was able to achieve a higher useful payload than

S-OPT, which implies that the latter achieves optimality.

5. Algorithm S-OPT(T, f ): optimal for any f > 1 in the Static Model

We now turn our focus on the case of any number of error tokens available to the adversary, for an interval of
length T , i.e., s > 1. We present the general adaptive algorithm S-OPT(T, f ) for f > 1 as Algorithm 2, and prove
its optimality in the static model. The pseudocode of S-OPT(T, f ) for f > 1 is similar to that of S-OPT(T, 1), with
a couple of differences. First, in this case it is not possible to explicitly give the length p of the first packet π sent
(values of α, β, and γ) when T ≥ f + 1 (see Theorem 4). Second, if π is jammed, the adversary still has some error
tokens that it can use. Hence, instead of sending a packet that spans the rest of the interval, S-OPT(T, f ) makes the call
S-OPT(T −p, f −1), which could be recursive if f > 2, or a call to the algorithm S-OPT(T −p, 1) (see Algorithm 1),
if f = 2. It will not be surprising then that the proof of optimality of the algorithm S-OPT(T, f ) will use induction on
f .

Algorithm 2 S-OPT(T, f ), for f > 1

If T < f + 1 then
Send packet π with length p = T

else
Send packet π with length p = αT+β

γ // α, β and γ depend on T ; see Theorem 4

If packet π is jammed then
Call S-OPT(T − p, f − 1)

else
Call S-OPT(T − p, f )

Let us first prove some observations that hold for any optimal algorithm OPT, to be used later in the analysis of
Algorithm S-OPT(T, f).

Observation 3. The useful payload of an optimal algorithm OPT, follows a non-decreasing function with respect to
the length of the interval of interest, T , when there are f ≥ 0 available errors, i.e., UP∗(T,f ) ≤ UP∗(T+δ,f ), for δ > 0.

Proof: Let us consider an optimal algorithm OPT that achieves optimal useful payload UP∗(T,f ) = α, for an interval
of length T and f error tokens available within the interval. Now let us construct an algorithm A, that for inter-
val length T + δ initially uses the exact same approach as OPT for T ; choosing the same packet lengths OPT does
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during the initial T time of the interval. This means that it has at least the same useful payload as OPT for T , i.e.,
UP(T+δ,f )(A) ≥ α. Since OPT is the optimal algorithm, it must achieve at least the same useful payload as A for the
interval of length T + δ, i.e., UP∗(T+δ,f ) ≥ UP(T+δ,f )(A). Hence, UP∗(T,f ) ≤ UP∗(T+δ,f ) as claimed.

Observation 4. The useful payload of an optimal algorithm OPT, follows a non-increasing function with respect to
the number of available errors in an interval of length T , i.e., UP∗(T,f ) ≤ UP∗(T,f−1), where f ≥ 1.

Proof: Let us consider an optimal algorithm OPT, with a useful payload UP∗(T,f ) = β for an interval length T with
f errors available. Then, let us construct an algorithm A, that for f − 1 error tokens during the same interval length
T , uses the exact approach as OPT for f errors; choosing the same packet lengths until f − 1 error tokens are used by
the adversary. Then, it schedules one packet equal to the size of the remaining interval. This means that it has at least
the same useful payload as OPT does for f errors, UP(T,f−1)(A) ≥ β. And since OPT is the optimal algorithm, it
must achieve at least the same useful payload for the same interval and f − 1 errors, i.e., UP∗(T,f−1) ≥ UP(T,f−1)(A).
Hence, UP∗(T,f ) ≤ UP∗(T,f−1) as claimed.

Lemma 3. There is an optimal algorithm OPT that is work-conserving, i.e., for each T and for each f , there is an
optimal work-conserving strategy deciding the packet lengths.

Proof: Assume by contradiction that there is some combination of interval and number of error tokens (T, f ), for
which no work-conserving scheduling strategy is optimal. We choose the smallest such T and consider the following:
(1) There is an optimal strategy for this pair of T and f that does not send any packet during the interval. Hence the
optimal useful payload is zero, UP∗(T,f ) = 0. In this case, sending one packet that spans the whole interval will lead to
the same payload.
(2) There is a strategy that waits for ∆ time at the beginning of the interval before sending a packet of length p. This
packet can be jammed. Therefore,

UP∗(T,f ) = min{UP∗(T−∆−p,f−1), p− 1 + UP∗(T−∆−p,f )}
≤ min{UP∗(T−p,f−1), p− 1 + UP∗(T−p,f )}.

Where the inequality follows from Observation 3. The right side of the inequality is the useful payload obtained by the
strategy that does not wait the ∆ period, but instead schedules the packet of length p at the beginning of the interval
(which is work-conserving). Since both cases lead to a contradiction, the claim follows.

Lemma 4. The optimal useful payload is a continuous function with respect to the length of the interval, T , when
there are f ≥ 1 errors available.

Proof: Assume by contradiction that the optimal useful payload is not a continuous function. This means that there
is an interval length T for which the following holds: lim

ε→0
UP∗(T−ε,f ) < UP∗(T,f ). Let us fix parameter ε > 0, and

observe the behavior of a work-conserving optimal algorithm OPT for interval lengths T and T − ε (such an algorithm
exists by Lemma 3). Let us then denote by pO and pε the lengths of the first packet scheduled by OPT in each case
respectively. These packets can be jammed or not. We observe that

UP∗(T−ε,f ) = min{UP∗(T−ε−pε,f−1), pε − 1 + UP∗(T−ε−pε,f )} (2)
UP∗(T,f ) = min{UP∗(T−pO,f−1), pO − 1 + UP∗(T−pO,f )} (3)

However, if we construct an alternative algorithm A that chooses a packet of length p′′ = pO− ε in the case of interval
of length T − ε, and works as OPT for smaller interval lengths, then

UP(T−ε,f )(A) = min{UP∗(T−pO,f−1), pO − ε− 1 + UP∗(T−pO,f )} ≥ UP∗(T,f ) − ε.
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Since UP∗(T−ε,f ) ≥ UP(T−ε,f )(A), it is then trivial to conclude that lim
ε→0

UP∗(T−ε,f ) = UP∗(T,f ), which is a contradic-
tion. Hence the optimal useful payload is a continuous function with respect to the length of the interval, as claimed.

We will now show how Algorithm S-OPT(T, f ) computes the packet length p of the packet π sent when T ≥ f +1.
The computation assumes that it is possible to recursively call S-OPT(T ′, j) for any T ′ < T and j ≤ f , and that the
useful payload of each of these recursive calls is the optimal value UP∗(T ′, j). Then, S-OPT(T, f ) chooses as length
of packet π the smallest value p ∈ [1, T ] that satisfies the equality UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ). Table 1 shows
the values of p chosen for some interval lengths T when f = 2. It also shows the useful payload achieved by the
algorithm using these values of p.

T [1, 3) [3, 9/2) [9/2, 17/3) [17/3, 19/3) [19/3, 70/9) [70/9, 308/36)

p T T
3

T+6
7

3T+3
12

5T+16
26

6T+42
42

UP∗(T,2) 0 T−3
3

3T−10
7

6T−22
12

14T−54
26

24T−98
42

Table 1: Values of packet length p and optimal useful payload UP∗
(T,2)

achieved with Algorithm S-OPT(T, 2).

We prove that the described process to make the choice leads to optimality in the following theorem.

Theorem 4. Given an interval of length T ≥ f + 1, Algorithm S-OPT(T, f ) achieves optimal useful payload by
choosing the smallest value p ∈ [1, T ] that satisfies the equality

UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ).

Moreover, there are constants αl, βl, γl, αk, βk, and γk such that UP∗(T−p,f ) = αl(T−p)−βl
γl

and UP∗(T−p,f−1) =
αk(T−p)−βk

γk
, and hence

p =
(αkγl − γkαl)T + γkγl + γkβl − βkγl

γkγl + αkγl − γkαl
.

(Observe that the parameters used in Algorithm 2 are hence α = αkγl − γkαl, β = γkγl + γkβl − βkγl, and
γ = γkγl + αkγl − γkαl.) The optimal useful payload obtained is then

UP∗(T,f ) =
αkγlT − (αkγl + αkβl + βkγl − βkαl)

γkγl + αkγl − γkαl
.

Proof: We prove by a double induction on the number of error tokens f and the length of the interval T , that the
approach followed by Algorithm S-OPT(T, f ) gives the optimal useful payload.
Base Cases. We have as base case of the induction on the number of error tokens the fact that (1) when f = 0 the
optimal strategy is to send a single packet of length T that spans the whole interval, leading to UP∗(T,0) = T − 1, and
(2) that the algorithm S-OPT(T, 1) presented before is optimal for any T , which covers the case f = 1.

For a given f > 1, we also use induction in the length of the interval T . In this case the base case is when
T < f + 1, which has optimal payload UP∗(T,f ) = 0, since the adversary can jam each of the up to f packets that can
be sent.
Induction Hypotheses. We first inductively assume that S-OPT(T, j) is optimal for any number of tokens j < f
available to the adversary at the beginning of the interval and any interval length T > j. In particular, for any j < f
and any T > j, there is a known range Rij = [aij , bij) such that T ∈ Rij , and the optimal useful payload is known to
be UP∗(T,j) =

αijT−βij
γij

. Parameters αij , βij and γij are known positive integers, such that βij > γij > αij .
We inductively also assume that, for f error tokens, there arem known rangesRif = [cif , dif ) for i = 1, 2, . . . ,m,

such that
⋃m
i=1Rif = [1, dmf ). Also, for any interval length T such that T < dmf and T ∈ Rif = [cif , dif ), the

optimal useful payload is known to be UP∗(T,f ) =
αif T−βif

γif
. Parameters αif , βif and γif are known positive integers

such that (1) βif > γif > αif , and for l ≤ r ≤ m it holds that (2) βrfγrf
≥ βlf

γlf
and (3) αrfγrf

≥ αlf
γlf

.
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Inductive Step. For interval length T ∈ [dmf , dmf + 1), the algorithm S-OPT(T, f ) chooses the smallest packet length
p ∈ [1, T ] that satisfies the following condition

UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ). (4)

Claim 1. There is at least one packet length p ∈ [1, T ] that satisfies Eq. 4.

Proof: Observe that, when p = 1, from Observation 4 we have that UP∗(T−p,f−1) ≥ p− 1 + UP∗(T−p,f ). On the other
hand, when p = T , we have that UP∗(T−p,f−1) = 0 ≤ p−1+UP∗(T−p,f ) = T −1. Hence, taking into consideration the
continuity of the useful payload function of both f − 1 and f error tokens (Lemma 4) and the Mean Value Theorem,
there always exists a packet size p ∈ [1, T ] such that UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ).

Now, let p be the packet length chosen, and assume that T − p ∈ Rkj and T − p ∈ Rlf . Then, by induction
hypothesis UP∗(T−p,f ) =

αlf (T−p)−βlf
γlf

and UP∗(T−p,f−1) =
αkj(T−p)−βkj

γkj
. Then, solving Eq. 4 for p, the packet

length is

p =
(αkjγlf − γkjαlf )T + γkjγlf + γkjβlf − βkjγlf

γkjγlf + αkjγlf − γkjαlf
,

and the useful payload obtained is

UP(T,f )(S-OPT) = UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ) =
αkj(T − p)− βkj

γkj

=
αkjγlf T − (αkjγlf + αkjβlf + βkjγlf − βkjαlf )

γkjγlf + αkjγlf − γkjαlf
,

as claimed. To complete the induction step, we define α = αkjγlf , β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and
γ = γkjγlf + αkjγlf − γkjαlf . Then, we show the following three properties (1) β > γ > α, (2) β

γ ≥
βlf
γlf

, and (3)
α
γ ≥

αlf
γlf

as follows.

Property 1. For the new parameters α = αkjγlf , β = αkjγlf +αkjβlf +βkjγlf −βkjαlf and γ = γkjγlf +αkjγlf −
γkjαlf , it holds that β > γ > α.

Proof: First, from the induction hypotheses, recall the definition of parameters αij ,βij and γij , being known positive
integers such that βij > γij > αij . Looking now at the current parameters α, β and γ individually, we have the
following:
(a) α = αkjγlf .
(b) β = αkjγlf + αkjβlf + βkjγlf − βkjαlf = αkj(γlf + βlf ) + βkj(γlf − αlf ).
(c) γ = γkjγlf + αkjγlf − γkjαlf = γkj(γlf − αlf ) + αkjγlf .

Observe that γkj(γlf −αlf ) +αkjγlf > αkjγlf , since γkj > 0 and γlf −αlf > 0 by induction hypothesis. Hence,
from (a) and (c) γ > α. Also, αkj(γlf + βlf ) + βkj(γlf − αlf ) > γkj(γlf − αlf ) + αkjγlf , since by induction
hypothesis βkj > γkj , γlf − αlf > 0, and all parameters are positive. Hence, from (b) and (c) β > γ holds as well.
This completes the proof of the claim.

Property 2. For the new parameters β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and γ = γkjγlf + αkjγlf − γkjαlf , it
holds that βγ >

βlf
γlf

.

Proof: For this proof observe first, that since β > γ (as shown in Property 1), we can safely use the fact that βγ >
β−c
γ−c ,

where c is positive. Also by induction hypothesis we have that γlf − αlf > 0 and βkj − γkj > 0. We therefore use

14



some fraction inequality properties as follows:

β

γ
=

αkjγlf + αkjβlf + βkjγlf − βkjαlf
γkjγlf + αkjγlf − γkjαlf

=
αkj(γlf + βlf ) + βkj(γlf − αlf )

γkj(γlf − αlf ) + αkjγlf

>
αkj(γlf + βlf ) + (βkj − γkj)(γlf − αlf )

αkjγlf
>
αkjγlf + αkjβlf

αkjγlf
= 1 +

βlf
γlf

>
βlf
γlf

,

which completes the proof.

Property 3. For the new parameters α = αkjγlf and γ = γkjγlf + αkjγlf − γkjαlf , it holds that αγ >
αlf
γlf

.

Proof: For this proof observe first, that since γ > α (as shown in Property 1), we can safely use the fact that αγ >
β+c
γ+c ,

where c is positive. Also by induction hypothesis we have that γlf −αlf > 0. We therefore use some fraction inequality
properties as follows:

α

γ
=

αkjγlf
γkjγlf + αkjγlf − γkjαlf

=
αkjγlf + γkjαlf
αkjγlf + γkjγlf

=
αkjαlf + αkj(γlf − αlf ) + γkjαlf

γlf (αkj + γkj)
=
αlf (αkj + γkj)

γlf (αkj + γkj)
+
αkj(γlf − αlf )

γlf (αkj + γkj)

>
αlf
γlf

,

which completes the proof.

We must now show that this useful payload is in fact optimal in the static model. Let us assume by contradiction
that an algorithm A is able to achieve a larger useful payload for the pair (T, f ) by sending first a different packet
length p′ 6= p. We consider the following cases:
(a) Algorithm A chooses a packet π′ of length p′ > p. Then, we assume that the adversary will jam the packet
π′. Hence, the useful payload achieved by A will be upper bounded as UP(T,f )(A) ≤ UP∗(T−p′,f−1) which by
Observation 3 is smaller than UP∗(T−p,f−1) = UP(T,f )(S-OPT), since T − p′ < T − p.
(b) Algorithm A chooses a packet π′ of length p′ < p. Observe that p′ does not satisfy Eq. 4, since p is the smallest
length that does. Then the adversary does not jam π′. Then, UP(T,f )(A) ≤ p′ − 1 + UP∗(T−p′,f ). We show now
that this value is no larger than p − 1 + UP∗(T−p,f ) = UP(T,f )(S-OPT). Let us assume that T − p′ ∈ Rrf , where

r ≥ l. Then, UP∗(T−p′,f ) =
αrf (T−p′)−βrf

γrf
≤ αrf

γrf
(T − p′)− βlf

γlf
, since βrf

γrf
≥ βlf

γlf
as shown by Property 2. Similarly,

UP∗(T−p,f ) =
αlf (T−p)−βlf

γlf
≥ αrf

γrf
(T − p) − βlf

γlf
, since αrf

γrf
≥ αlf

γlf
as shown by Property 3. Finally, combining these

bounds and the fact that αrfγrf
< 1 (see Property 1), we get that

UP(T,f )(A) ≤ p′ − 1 + UP∗(T−p′,f ) ≤ p′ − 1 +
αrf
γrf

(T − p′)− βlf
γlf

≤ p′ − 1 +
αrf
γrf

(T − p′)− βlf
γlf

+ (p− p′)− αrf
γrf

(p− p′)

= p− 1 +
αrf
γrf

(T − p)− βlf
γlf
≤ UP(T,f )(S-OPT)

In all cases the resulting useful payload is smaller than the one achieved by choosing the smallest packet size p
such that UP∗(T−p,f−1) = p− 1 + UP∗(T−p,f ). Hence the packet size calculated by S-OPT(T, f ) is optimal.
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6. Uniform packets for the Dynamic Model

The main goal for the algorithms in the dynamic model, is to maximize the data successfully transmitted to the
receiver in any interval T . This, corresponds to minimizing the transmission time needed to successfully transmit a
total amount of data P to the receiver, considering a value P that will eventually grow to infinity. As a consequence,
this would also maximize the goodput rate, which is our main efficiency measure for the two models. Knowing both
adversarial parameters, ρ and σ, let us consider algorithm D-UNI and uniform packets of size p.len = l + 1 < 1/ρ.
We can then find the quasi optimal value for the length of the payload l in each packet that minimizes the transmission
time. For simplicity, we will assume that the total length of the data to be transmitted, P , is a multiple of the payload
length l. (For large values of P the error introduced by this assumption is negligible.) Then, the objective is that P/l
packets arrive successfully at the receiver.

Let us now derive a lower bound on the transmission time that can be achieved using uniform packets. We denote
with Tr(l) the transmission time with packets of uniform payload l. Let r be the number of packets jammed and
retransmitted by the sender. Then,

Tr(l) = (P/l + r)(l + 1). (5)

Observe that the last packet transmitted was correctly received, since otherwise the data would have been com-
pletely transmitted by time Tr(l)− (l + 1), which contradicts the fact that Tr(l) is the transmission time. Hence, the
number of packets jammed and retransmitted is upper bounded as

r ≤ d(Tr(l)− (l + 1))ρe − 1 + σ, (6)

where we apply the fact that the last error used by the adversary must have been available before time Tr(l)− (l+ 1).
We claim that the number of packets jammed by the adversary and retransmitted is in fact equal to the bound of
Eq. 6. Otherwise, the adversary could have jammed the last packet sent (at time Tr(l) − (l + 1)), achieving a longer
transmission time. Hence,

r = d(Tr(l)− (l + 1))ρe − 1 + σ. (7)

Moreover, since the adversary could not jam the last packet sent, it must also hold that r + 1 ≥ Tr(l)ρ + σ =
(P/l + r)(l + 1)ρ+ σ, from which we can bound the value of r as

r ≥ Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)
. (8)

Let us define the lower bound of the transmission time when packets of uniform payload l are used, as function
LB(l). Then,

Lemma 5. Using algorithm D-UNI with uniform packets of payload l, the lower bound of the transmission time is

Tr(l) ≥ LB(l) =
P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1).

Proof: Replacing the lower bound of r (Eq. 8) in Eq. 5 we have

Tr(l) ≥
(
P

l
+
Pρ(l + 1) + (σ − 1)l

l − lρ(l + 1)

)
(l + 1) =

P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1),

which when combined with the definition of LB(l), completes the proof.

Using calculus, we can find the payload length l∗ that minimizes LB(l), which yields the following theorem.

Theorem 5. Using uniform packets the transmission time is lower bounded as

Tr ≥ LB(l∗) =
P + (σ − 1)l∗

l∗(1− ρ(l∗ + 1))
(l∗ + 1)
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and the goodput rate is upper bounded as

G(D-UNI) ≤ P

LB(l∗)
=

Pl∗(1− ρ(l∗ + 1))

(P + (σ − 1)l∗)(l∗ + 1)
,

where

l∗ =

√
P (Pρ+ (σ − 1)(1− ρ))− Pρ

Pρ+ σ − 1
.

Obviously, when P tends to∞, so does the transmission time Tr . However, we can derive in this case an upper
bound on the goodput as follows.

Corollary 1. Using algorithm D-UNI with uniform packets, the goodput rate is upper bounded as G(D-UNI) ≤
(1−√ρ)2, and in the limit as the value of P grows,

G∗ = lim
P→∞

G(D-UNI) = (1−√ρ)2

Proof: Using calculus it can be shown that the upper bound of G(D-UNI) obtained in Theorem 5 grows with P .
Observe that lim

P→∞
G(D-UNI) = l∗(1− ρ(l∗ + 1))/(l∗ + 1) and lim

P→∞
l∗ = (

√
ρ− ρ)/ρ = 1/

√
ρ− 1. Replacing the

latter in the former the claims follow.

We now show a corresponding upper bound on the transmission time. We start by combining Eqs. 7 and 5 as
follows:

r = d(Tr(l)− (l + 1))ρe − 1 + σ < (Tr(l)− (l + 1))ρ+ σ

= ((P/l + r)(l + 1)− (l + 1))ρ+ σ

= (P/l + r)(l + 1)ρ+ σ − (l + 1)ρ.

This allows us to find an upper bound of r as

r <
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)
. (9)

Let us now define the upper bound of the transmission time when packets of payload l are used, as function UB(l).
Then,

Lemma 6. Using algorithm D-UNI with uniform packets of payload l, the upper bound of the transmission time is

Tr(l) < UB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1).

Proof: Replacing the upper bound of r (Eq. 9) in Eq. 5 we have

Tr(l) <

(
P

l
+
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)

)
(l + 1) =

P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1),

which when combined with the definition of UB(l), completes the proof.

From Observation 1, ρ < 1/(l + 1) must hold. Then, (l + 1)ρ < 1 and the bound obtained in the above lemma
is strictly bigger than the lower bound presented in Lemma 5, as expected. In fact, the gap between bounds can be
obtained as shown in the following lemma.

Lemma 7. Using uniform packets of payload l, the transmission time satisfies Tr(l) ∈ [LB(l), LB(l) + l + 1).
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Proof: Recall that the lower bound LB(l) is obtained in Lemma 5. Subtracting this expression from the upper bound
UB(l) presented in Lemma 6, we have

UB(l)− LB(l) =
P + (σ − (l + 1)ρ)l

l(1− ρ(l + 1))
(l + 1)− P + (σ − 1)l

l(1− ρ(l + 1))
(l + 1)

=
l(1− ρ(l + 1))

l(1− ρ(l + 1))
(l + 1) = l + 1.

From the above and the fact that Tr(l) < UB(l) the claim follows.

Corollary 2. Using uniform packets of payload l, Tr(l) is the only multiple of l+1 that falls in the interval [LB(l), LB(l)+
l + 1).

Finally, combining Lemma 7 with Theorem 5 we derive the following theorem.

Theorem 6. Consider l∗ as defined in Theorem 5. Then

• the transmission time Tr(l∗) observed is less that l∗ + 1 (one packet) longer that the optimal. I.e., Tr(l∗) <
Tr + l∗ + 1.

• the goodput G(l∗) converges to the optimal goodput G(D-UNI) as P grows. Additionally, when P goes to
infinity the goodput matches the optimal G∗, i.e. lim

P→∞
G(l∗) = lim

P→∞
G(D-UNI) = (1−√ρ)2.

Proof: The first claim follow directly from Lemma 7, since the value of l∗ is the one that minimizes LB(l). For the
second, recall that G(l∗) = P

Tr(l∗) . Hence, observing again Lemma 7 we get that

G(l∗) >
P

LB(l∗) + l∗ + 1
=

1
LB(l∗)
P + l∗+1

P

.

As P grows l∗+1
P tends to 0, making G(l∗) converge to P/LB(l∗) which is an upper bound on the optimal goodput.

Finally, as shown in Corollary 1, when P tends to infinity, P/LB(l∗) tends to (1−√ρ)2, which completes the proof.

7. Discussion/Conclusions

In this paper we have applied Adversarial Queuing Theory (AQT), a well known theoretical modeling tool, to
restrict adversarial packet jamming on wireless networks, creating the dynamic model studied. We have chosen a
constrained adversarial entity, considering a bounded error-token capacity σ and an error-token availability rate ρ.
This model could be applied in various battery-operated malicious devices, such as drones or mobile jammers.

We have also studied a static model, for which new parameters are considered; for an interval of time T the
adversary is able to create at most f jams, having all f error-tokens available at the beginning of the interval. This
model is used as a building block in our aim to find a solution to the problem of the dynamic model.

We have first shown an upper bound on the goodput rate of the static model, when uniform packet lengths are used,
proposing algorithm S-UNI. Then, focusing on f = 1, we have shown that adaptive algorithms that change the packet
length based on feedback received for jammed packets, can actually achieve better goodput rates, thus showing that
the uniform packet scheduling is not the best approach. What might seem surprising is that even for the “simple” case
of f = 1, the analysis of the adaptive algorithms is nontrivial, and imposes constraints also on T .

In Figure 1, you can see a graphical representation of the improvement in the goodput rate by the different algo-
rithms developed, for the case of σ = f = 1 and T = 1/ρ. Unfortunately, as also shown by our analysis, algorithm
S-DEC is better than S-UNI only for T > 2

7−3
√

5
. However, this has given a positive intuition for the fact that other

adaptive algorithms may exist with better goodput rate, as well as for the smaller time intervals. Exploring this further,
we proposed algorithm S-OPT(T, 1), which as we have also shown analytically, exceeds the performance of S-UNI for

18



1 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

T

G
oo

dp
ut

, G

 

 

S−OPT(T,1)
S−DEC
D−UNI
S−UNI

Figure 1: The goodput rate of algorithms S-OPT(T, 1), S-DEC and the uniform packet scheduling for both static and dynamic models, with
σ = f = 1 in a time interval 1/ρ = T = 1 . . . 22.

T > 4, and is in fact optimal. Finally, we show the goodput rate of the uniform packet scheduling algorithm D-UNI,
developed for the dynamic model, which is actually better than all proposed algorithms for intervals T < 4. We
believe that this is due to the fact that D-UNI is not restricted to fit the packet length in the intervals 1/ρ, and further
investigation is necessary to see whether there exists any other adaptive packet scheduling algorithm that exceeds that
goodput rate.

In Section 2.3 we proposed a recursive algorithm ALGD, that uses the optimal solution of the static model to solve
the problem in the dynamic model. It divides the executions into consecutive intervals of length 1/ρ, and assumes σ
error tokens available at the beginning of each one. Then these intervals can be seen as instances of the static model,
where T = 1/ρ and f = σ. However, this algorithm may not be the best possible, as we make the pessimistic
assumption that at the beginning of each interval, the adversary will have all σ error tokens available to use; this is true
for the first interval, but in successive intervals this might not be the case (with the exception of the case σ = 1, which
we discuss further below).

Based on the dynamic model, a new error token will be arriving at the beginning of each interval. If there are
already σ tokens, then a token is lost (σ represents, for example, the capacity of the battery of a jamming device – this
cannot be exceeded). If in this interval, the adversary performs, say, three packet jams, then at the beginning of the next
interval it will have σ−2 available tokens. If the scheduling algorithm keeps track of this, then in this interval it should
use S-OPT(1/ρ, σ − 2) instead of S-OPT(1/ρ, σ). So, in order to produce more efficient solutions, the scheduling
algorithm needs to keep track (using the feedback mechanism) how many jams took place in the previous interval,
and using its knowledge of 1/ρ, run the appropriate version of S-OPT(). Although there are other subtle issues that
also need to be considered, the proposed approach can be used as the basis for obtaining an optimal solution to the
continuous version of the problem. We plan to pursue this direction in future research.
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Regarding the case of f = σ = 1, as demonstrated in Fig. 1 above, algorithm S-OPT(1/ρ, 1) obtains better results
than Algorithm S-DEC. Since in the case of σ = 1 it is best for the adversary to use the error token (otherwise it will
lose it), our improved goodput demonstrates the promise of the abovementioned approach. Nonetheless, we have also
noticed that the uniform packet scheduling algorithm D-UNI still achieves better goodput rate for some small values of
T . Apart from whether that can be exceeded, an intriguing open question is whether it is still possible to obtain better
efficiency than the uniform packet lengths “policy”, with adaptive algorithms for σ > 1. Considering for example
σ = 2 seems to already be a challenging task.

We believe that our results are only the beginning of further interesting research lines. In general, they motivate
studies on the aspect of data partitioning in case of threads. Our work could also be seen in the context of distributed
or parallel job executions. An interesting future direction is to investigate the case where one or both parameters
ρ and σ are not known; here one will need to monitor the history of the observed jams in an attempt to estimate
these parameters. On the other hand, the adversary will try to “hide” the true value of these parameters, yielding an
interesting gameplay between the adversary and an algorithm. Another direction to follow would be to consider in
addition the channel errors due to congestion and transmission rate. A related future research line could also be to
consider multi-channel settings and study the benefits that similar approaches could have depending on the strength
of the adversaries assumed. Furthermore, conducting a study on randomized algorithms and giving lower bounds for
that case would be valuable in order to identify their limits as well.
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