
Achieving Reliability in Master-Worker
Computing via Evolutionary Dynamics

Evgenia Christoforou1, Antonio Fernández Anta2, Chryssis Georgiou1,
Miguel A. Mosteiro3, and Angel (Anxo) Sánchez4

1 University of Cyprus, Nicosia, Cyprus
2 Institute IMDEA Network & Univ. Rey Juan Carlos, Madrid, Spain

3 Rutgers University, Piscataway, NJ, USA & Univ. Rey Juan Carlos, Madrid, Spain
4 Universidad Carlos III de Madrid, Madrid, Spain & BIFI Institute, Zaragoza, Spain

Abstract. This work considers Internet-based task computations in which
a master process assigns tasks, over the Internet, to rational workers and
collect their responses. The objective is for the master to obtain the cor-
rect task outcomes. For this purpose we formulate and study the dynam-
ics of evolution of Internet-based master-worker computations through
reinforcement learning.

1 Introduction

Motivation: As an alternative to expensive supercomputing parallel machines,
Internet is a feasible computational platform for processing complex compu-
tational jobs. Several Internet-based applications operate on top of this global
computation infrastructure. Examples are volunteer-based “@home” projects [2]
such as SETI and profit-seeking computation platforms such as Amazon’s Me-
chanical Turk.

Although the potential is great, the use of Internet-based computing is limited
by the untrustworthy nature of the platform’s components [2]. In SETI, for
example, there is a machine, call it the master, that sends tasks, across the
Internet, to volunteers’ computers, call them workers, that execute and report
back some result. However, these workers may not be trustworthy and it might be
at their best interest to report incorrect results; that is, workers, or their owners,
can be viewed as rational [1, 14]. In SETI, the master attempts to minimize the
impact of these bogus results by assigning the same task to several workers and
comparing their outcomes (i.e., redundant task allocation is employed [2]).

Prior work [8,9,18] has shown that it is possible to design algorithmic mecha-
nisms with reward/punish schemes so that the master can reliably obtain correct
task results. We view these mechanisms as one-shot in the following sense: In a
round, the master sends a task to be computed to a collection of workers, and
the mechanism, using auditing and reward/punish schemes guarantees (with
high probability) that the master gets the correct task result. For another task
to be computed, the process is repeated (with the same or different collection of
workers) but without taking advantage of the knowledge gained.

Given a long running computation (such as SETI-like master-worker compu-
tations), it can be the case that the best interests, and hence the behavior of the
workers, might change over time. So, one wonders: Would it be possible to design
a mechanism for performing many tasks, over the course of a possibly infinite

computation, that could positively exploit the repeated interaction between a
master and the same collection of workers?

Our approach: In this work we provide a positive answer to the above question.
To do so, we introduce the concept of evolutionary dynamics under the biological
and social perspective and relate them to Internet-based master-worker task
computing. More specifically, we employ reinforcement learning [4,15] to model
how system entities or learners interact with the environment to decide upon
a strategy, and use their experience to select or avoid actions according to the
consequences observed. Positive payoffs increase the probability of the strategy
just chosen, and negative payoffs reduce this probability. Payoffs are seen as
parameterizations of players’ responses to their experiences. Empirical evidence
[3, 5] suggests that reinforcement learning is more plausible with players that
have information only on the payoffs they receive; they do not have knowledge
of the strategies involved. This model of learning fits nicely to our master-worker
computation problem: the workers have no information about the master and
the other workers’ strategies and they don’t know the set of strategies that led to
the payoff they receive. The workers have only information about the strategies
they choose at each round of the evolution of the system and their own received
payoffs. The master also has minimal information about the workers and their
intentions (to be truthful or not). Thus, we employ reinforcement learning for
both the master and the workers in an attempt to build a reliable computational
platform.

Our contributions:

1. We initiate the study of the evolutionary dynamics of Internet-based master-
worker computations through reinforcement learning.

2. We develop and analyze a mechanism based on reinforcement learning to be
used by the master and the workers. In particular, in each round, the master
allocates a task to the workers and decides whether to audit or not their
responses with a certain probability pA. Depending on whether it audits or
not, it applies a different reward/punish scheme, and adjusts the probability
pA for the next round (a.k.a. the next task execution). Similarly, in a round,
each worker i decides whether it will truthfully compute and report the cor-
rect task result, or it will report an incorrect result, with a certain probability
pCi. Depending on the success or not of its decision, measured by the increase
or the decrease of the worker’s utility, the worker adjusts probability pCi for
the next round.

3. We show necessary and sufficient conditions under which the mechanism en-
sures eventual correctness, that is, we show the conditions under which, after
some finite number of rounds, the master obtains the correct task result
in every round, with minimal auditing, while keeping the workers satisfied
(w.r.t. their utility). Eventual correctness can be viewed as a form of Evolu-
tionary Stable Strategy [6,10] as studied in Evolutionary Game Theory: even
if a “mutant” worker decides to change its strategy to cheating, it will soon
be brought back to an honest strategy.

4. Finally, we show that our mechanism, when adhering to the above-mentioned
conditions, reaches eventual correctness quickly. In particular, we show ana-
lytically, probabilistic bounds on the convergence time, as well as bounds on
the expected convergence time. Our analysis is complemented with simula-
tions.

Background and Related Work: Evolutionary dynamics were first studied
in evolutionary biology, as a tool to studying the mathematical principles ac-
cording to which life is evolving. Many fields were inspired by the principles of
evolutionary dynamics; our work is inspired by the dynamics of evolution as a
mean to model workers’ adaptation to a truthful behavior.

The dynamics of evolution have mainly been studied under the principles of
Evolutionary Game Theory (EGT) [11]. In EGT the concept of evolutionarily
stable strategy (ESS) is used [6, 10]. A strategy is called evolutionary stable if,
when the whole population is using this strategy, any group of invaders (mu-
tants) using a different strategy will eventually die off over multiple generations
(evolutionary rounds). It is shown [10] that an ESS is a Nash Equilibrium, but
the reverse is not true.

While evolution operates on the global distribution of strategies within a
given population, reinforcement learning [15] operates on the individual level of
distribution over strategies of each member of the population. There are sev-
eral models of reinforcement learning. A well-known model is the Bush and
Mosteller’s model [4]. This is an aspiration-based reinforcement learning model
where negative effects on the probability distribution over strategies are pos-
sible, and learning does not fade with time. The player’s adapt by comparing
their experience with an aspiration level. In our work we adapt this reinforcement
learning model and we consider a simple aspiration scheme where aspiration is
fixed by the workers and does not change during the evolutionary process.

Phelps, McBurney and Parsons [13] discusses the concept of Evolutionary
Mechanism Design. The evolutionary mechanism has a continues interaction
and feedback from the current mechanism, as opposed to classical mechanism
design [12] than when the mechanism is introduced in the system, it remains in
the same Nash Equilibrium forever. In some way, our mechanism can be seen as
an evolutionary mechanism, since the probability of auditing of the master and
the probability of cheating of the workers, change, which is similar to changing
the mechanism.

An extended account on related work (discussing applications of game theory
to distributed computing, the concept of combinatorial agencies, the BAR model,
etc.) can be found in [17].

2 Model and Definitions

Master-Worker Framework: We consider a distributed system consisting of
a master processor that assigns, over the Internet, computational tasks to a set
of n workers (w.l.o.g., we assume that n is odd). In particular, the computation
is broken into rounds, and in each round the master sends a task to the work-
ers to compute and return the task result. The master, based on the workers’

WPC worker’s punishment for being caught cheating

WCT worker’s cost for computing the task

WBY worker’s benefit from master’s acceptance

MPW master’s punishment for accepting a wrong answer

MCY master’s cost for accepting the worker’s answer

MCA master’s cost for auditing worker’s answers

MBR master’s benefit from accepting the right answer

Table 1. Payoffs. The parameters are non-negative.

replies, must decide on the value it believes is the correct outcome of the task
in the same round. The tasks considered in this work are assumed to have a
unique solution; although such limitation reduces the scope of application of the
presented mechanism [16], there are plenty of computations where the correct
solution is unique: e.g., any mathematical function.

Following Abraham et al. [1], and Shneidman and Parkes [14], we assume
that workers are rational, that is, they are selfish in a game-theoretic sense
and their aim is to maximize their benefit (utility) under the assumption that
other workers do the same. In the context of this paper, a worker is honest
in a round, when it truthfully computes and returns the task result, and it
cheats when it returns some incorrect value. So, a worker decides to be honest
or cheat depending on which strategy maximizes its utility. We denote by prCi
the probability of a worker i cheating in round r. This probability is not fixed,
the worker adjusts it over the course of the computation.

While it is assumed that workers make their decision individually and with
no coordination, it is assumed that all the workers that cheat in a round return
the same incorrect value (as done, for example, in [7] and [8]). This yields a worst
case scenario (and hence analysis) for the master with respect to obtaining the
correct result using mechanisms where the result is the outcome of voting; it
subsumes models where cheaters do not necessarily return the same answer. (In
some sense, this can be seen as a cost-free, weak form of collusion.)
Auditing, Payoffs, Rewards and Aspiration: To “persuade” workers to
be honest, the master employs, when necessary, auditing and reward/punish
schemes. The master, in a round, might decide to audit the response of the
workers (at a cost). In this work, auditing means that the master computes the
task by itself, and checks which workers have been honest. We denote by pA the
probability of the master auditing the responses of the workers. The master can
change this auditing probability over the course of the computation. However,
unless otherwise stated, we assume that there is a value pminA > 0 so that at all
times pA ≥ pminA .

Furthermore, the master can reward and punish workers, which can be used
(possibly combined with auditing) to encourage workers to be honest. When the
master audits, it can accurately reward and punish workers. When the master
does not audit, it decides on the majority of the received replies, and it rewards
only the majority. We refer to this as the Rm reward scheme.

The payoff parameters considered in this work are detailed in Table 1. Note
that the first letter of the parameter’s name identifies whose parameter it is.

M stands for master and W for worker. Then, the second letter gives the type
of parameter. P stands for punishment, C for cost, and B for benefit. Observe
that there are different parameters for the reward WBY to a worker and the cost
MCY of this reward to the master. This models the fact that the cost to the
master might be different from the benefit for a worker.

We assume that, in every round, a worker i has an aspiration ai, that is, the
minimum benefit it expects to obtain in a round. In order to motivate the worker
to participate in the computation, the master must ensure that WBY ≥ ai; in
other words, the worker has the potential of its aspiration to be covered. We
assume that the master knows the aspirations. This information can be included,
for example, in a contract the master and the worker agree on, prior to the start
of the computation.

Note that, among the parameters involved, we assume that the master has the
freedom of choosing WBY and WPC ; by tuning these parameters and choosing
n, the master can achieve the goal of eventual correctness. All other parameters
can either be fixed because they are system parameters or may also be chosen
by the master (except the aspiration, which is a parameter set by each worker).
Eventual Correctness: The goal of the master is to eventually obtain a reliable
computational platform. In other words, after some finite number of rounds, the
system must guarantee that the master obtains the correct task results in every
round with probability 1. We call such property eventual correctness.

3 Algorithmic Mechanism

We now detail the algorithms run by the Master and the workers.
Master’s Algorithm: The master’s algorithm begins by choosing the initial
probability of auditing. After that, at each round, the master sends a task to all
workers and, when all answers are received (a reliable network is assumed), the
master audits the answers with probability pA. In the case the answers are not
audited, the master accepts the value contained in the majority of answers and
continues to the next round with the same probability of auditing. In the case the
answers are audited, the value pA of the next round is reinforced (i.e., modified
according to the outcome of the round). Then, the master rewards/penalizes the
workers appropriately. The master initially has scarce or no information about
the environment (e.g., workers initial pC). The initial probability of auditing will
be set according to the information the master possesses. For example if it has
no information about the environment, a safe approach may be to initially set
pA = 0.5.

Observe that, when the answers are not audited, the master has no informa-
tion about the number of cheaters in the round. Thus, the probability pA remains
the same as in the previous round. When the answers are audited, the master
can safely extract the number of cheaters. Then, the master adapts the auditing
probability pA according to this number. (We denote by cheaters(r) the num-
ber of cheaters in round r.) Observe that the algorithm guarantees pA ≥ pminA .
This, combined with the property pminA > 0 will prevent the system to fall in
a permanent set of “bad” states where pA = 0 and pC > 0. A discount factor,

Algorithm 1 Master’s Algorithm

pA ← x, where x ∈ [pmin
A , 1]

for r ← 1 to ∞ do
send a task T to all workers in W
upon receiving all answers do

audit the answers with probability pA
if the answers were not audited then

accept the majority
else
p′A ← pA + αm(cheaters(r)/n− τ)

pA ← min{1,max{pmin
A , p′A}}

∀i ∈W : pay/charge Πito worker i

Algorithm 2 Algorithm for Worker i

pCi ← y, where y ∈ [0, 1]
for r ← 1 to ∞ do

receive a task T from the master
set Si ← −1 with probability pCi, and

Si ← 1 otherwise
if Si = 1

then σ ← compute(T)
else σ ← arbitrary solution
send response σ to the master
get payoff Πi

p′Ci ← pCi − αw(Πi − ai)Si

pCi ← max{0,min{1, p′Ci}}

which we call tolerance and denote by τ , expresses the master’s tolerable ratio of
cheaters (typically, we will assume τ = 1/2). Hence, if the proportion of cheaters
is larger than τ , pA will be increased, and otherwise, pA will be decreased. The
amount by which pA changes depends on the difference between these values,
modulated by a learning rate αm. This latter value determines to what extent
the newly acquired information will override the old information. (For example,
if αm = 0 the master will never adjust pA.)

Workers’ Algorithm: The workers’ algorithm begins with each worker i de-
ciding an initial probability of cheating pCi. At each round, each worker receives
a task from the master and, with probability 1 − pCi calculates the task, and
replies to the master with the correct answer. If the worker decides to cheat, it
fabricates an answer, and sends the incorrect response to the master. We use a
flag Si to model the decision of a worker i to cheat or not. After receiving its
payoff (detailed in the analysis section), each worker i changes its pCi according
to the payoff Πi received, the chosen strategy Si, and its aspiration ai. Observe
that the workers’ algorithm guarantees 0 ≤ pCi ≤ 1. The workers have a learn-
ing rate αw. We assume that all workers have the same learning rate, that is,
they learn in the same manner (see also the discussion in [15]; the learning rate
is called step-size there); note that our analysis can be adjusted to accommodate
also workers with different learning rates.

4 Analysis

We now analyze the mechanism, which is composed of the Master’s and the
workers’ algorithms presented in the previous section. We first model the evo-
lution of the mechanism as a Markov Chain, and then we prove necessary and
sufficient conditions for achieving eventual correctness. Then, we provide ana-
lytical evidence that convergence to eventual correctness can be reached rather
quickly. Observe in Algorithms 1 and 2 that there are a number of variables
that may change in each round. We will denote the value of a variable X after
a round r with a superindex r as Xr.

4.1 The Mechanism as a Markov Chain
We analyze the evolution of the master-workers system as a Markov chain. To
do so, we first define the set of states and the transition functions:

Let the state of the Markov chain be given by the vector of probabilities
(pA, pC1, pC2, . . . , pCn). Then, the state after round r is (prA, p

r
C1, p

r
C2, . . . , p

r
Cn).

Observe from Algorithms 1 and 2 that any state (pA, pC1, pC2, . . . , pCn) in which
pA ∈ [pminA , 1], and pCi ∈ [0, 1] for each worker i, is a possible initial state of the
Markov chain. The workers’ decisions, the number of cheaters, and the payoffs
in round r are the stochastic outcome of the probabilities used in round r. Then,
restricted to prA ∈ [pminA , 1] and prCi ∈ [0, 1], we can describe the transition
function of the Markov chain in detail. For each subset of workers F ⊆ W ,
P (F) =

∏
j∈F p

r−1
Cj

∏
k/∈F (1− pr−1

Ck) is the probability that the set of cheaters is
exactly F in round r. Then, we have the following.
– With probability pr−1

A · P (F), the master audits when the set of cheaters is
F , and then, (0) the master updates pA as prA = pr−1

A + αm(|F |/n− τ), and
(1) each worker i ∈ F updates pCi as prCi = pr−1

Ci − αw(ai + WPC), (2) each
worker i /∈ F updates pCi as prCi = pr−1

Ci + αw(ai − (WBY −WCT)).
– With probability (1−pr−1

A)P (F), the master does not audit when F is the set
of cheaters. Then, the master does not change pA and the workers update pCi
as follows. For each i ∈ F , (3) if |F | > n/2 then prCi = pr−1

Ci +αw(WBY −ai),
(4) if |F | < n/2 then prCi = pr−1

Ci − αw · ai, and for each i /∈ F , (5) if
|F | > n/2 then prCi = pr−1

Ci + αw(ai + WCT), (6) if |F | < n/2 then prCi =
pr−1
Ci + αw(ai − (WBY −WCT)).

The following terminology will be used throughout. Let a covered worker be
one that is paid at least its aspiration ai and the computing cost WCT . In any
given round r, let an honest worker be one for which pr−1

C = 0. Let an honest
state be one where the majority of workers are honest. Let an honest set be any
set of honest states. We refer to the opposite cases as uncovered worker, cheater
worker (pr−1

C = 1), cheat state, and cheat set respectively.

4.2 Conditions for Eventual Correctness
We show the conditions under which the system can guarantee eventual correct-
ness. We begin with some terminology. Let a set of states S be called closed if,
once the chain is in any state s ∈ S, it will not move to any state s′ /∈ S. (A
singleton closed set is called an absorbing state.) For any given set of states S,
we say that the chain reaches (resp. leaves) the set S if the chain reaches some
state s ∈ S (resp. reaches some state s /∈ S).

In order to show eventual correctness, we must show eventual convergence to
a closed honest set. Thus, we need to show (i) that there exists at least one such
closed honest set, (ii) that all closed sets are honest, and (iii) that one honest
closed set is reachable from any initial state. Omitted proofs are given in [17].

Lemma 1. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥ ai.
If |Z| > n/2, then the set of states

S = {(pA, pC1, . . . , pCn)|(pA = 0) ∧ (∀w ∈ Z : pCw = 1)},
is a closed cheat set.

Given (ii) above, the necessity of pminA > 0 is motivated by the above lemma.
Hence, pA > 0 is assumed for the rest of the analysis.

Lemma 2. If there exists a set of workers Z ⊆ W such that |Z| > n/2 and
∀i ∈ Z : WBY < ai + WCT , then no honest set is closed.

Given (i) above, the necessity of a covered majority is motivated by Lemma 2.
Hence, in the remainder we assume that the majority of workers are covered.

Lemma 3. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai + WCT and ∀j /∈ Z : WBY < aj + WCT . If |Z| > n/2, then the set of states

S = {(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0},

is a closed set.

Hence Lemma 3 proves (i) above. We continue with the proof of the other prop-
erties.

Lemma 4. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai + WCT and ∀j /∈ Z : WBY < aj + WCT . Then, for any set of states

S = { (pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧ (∀w ∈ Y : pCw = 0) ∧ (Z * Y)},

S is not a closed set.

Lemma 5. Consider any set of workers Z ⊆ W such that ∀i ∈ Z : WBY ≥
ai + WCT and ∀j /∈ Z : WBY < aj + WCT . If |Z| > n/2 and pA > 0, then for
any set of states

S = {(pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧ (∀w ∈ Y : pCw > 0)},

S is not a closed set.

Together, Lemma 4 and 5 prove (ii), and also (iii) because, if only honest
sets are closed, then there is a way of going from non-honest sets to one of them.
Lemmas 3–5 give the overall result:

Theorem 1. If pA > 0 then, in order to guarantee with positive probability that,
after some finite number of rounds, the system achieves eventual correctness, it
is necessary and sufficient to set WBY ≥ ai + WCT for all i ∈ Z in some
set Z ⊆W such that |Z| > n/2.

The above theorem shows that there is a positive probability of reaching
some state after which correctness can be guaranteed, as long as for a chosen
majority of workers, the payment is enough to cover their aspiration and cost of
performing the task.
Remark: From Algorithm 1 it is easy to see that once the closed set S =
{(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0} is reached, eventually pA = pminA and
stays such forever.

4.3 Convergence Time

Theorem 1 shows necessary and sufficient conditions to achieve eventual correct-
ness. However, in order to have a practical system, it is necessary to bound the
time taken to achieve it, which we call the convergence time. In other words,
starting from any initial state, we want to compute the number of rounds that
takes to the Markov chain to reach an honest closed set. In this section, we show
bounds on the convergence time. Omitted proofs are given in [17].
Expected Convergence Time: Let C be the set of all covered workers. We
assume, as required by Theorem 1, that |C| > n/2. From transitions (1) and
(2) in the Markov chain definition, it can be seen that it is enough to have a
consecutive sequence of 1/(αw min{WBY−ai−WCT ,WPC+ai}),∀i ∈ C, audits
to enforce pC = 0 for all covered workers. Which gives the following upper bound
on the convergence time.

Theorem 2. The expected convergence time is at most ρ/(pminA)ρ, where ρ =
1/(αw mini∈C{WBY−ai−WCT ,WPC+ai}) and C is the set of covered workers.

The upper bound shown in Theorem 2 may be too pessimistic for certain
values of the parameters. The following theorem provides a tighter bound under
certain conditions.

Theorem 3. Let us define, for each worker i, deci , αw min{WPC+ai,WBY−
WCT −ai}, and inci , αw max{WBY−ai,WCT +ai}. Let C be the set of covered
workers. If pminA = maxi∈C{inci/(inci + deci)} + ε, for some 0 < ε < 1 −
maxi∈C{inci/(inci + deci)}, the expected convergence time is 1/(εmini∈C deci).

The following corollary is derived from the previous theorem for a suitable sce-
nario.

Corollary 1. If WPC + ai ≥ WBY −WCT − ai and WBY − ai ≤ WCT + ai,
∀i ∈ C, and if

pminA =
WCT + maxi∈C ai

WBY
+ ε,

where C is the set of covered workers and 0 < ε < 1−(WCT +maxi∈C ai)/WBY ,
then the expected convergence time is ρ/ε, where ρ = 1/(αw(WBY −WCT −
maxi∈C ai)).

Probabilistic Bound on the Number of Rounds for Convergence: We
show now that, under certain conditions on the parameters of the system, it
is possible to bound the probability to achieve convergence and the number of
rounds to do so. Assume that p0

A > 0. Since pA is not changed unless the master
audits, we have the following.

Lemma 6. Let p0
A = p > 0. Then, the master audits in the first ρ = ln(1/ε1)/p

rounds with probability at least 1− ε1, for any ε1 ∈ (0, 1).

Let us assume that the system parameters are such that, for all workers
i, αw(WPC + ai) ∈ [0, 1] and αw(WBY −WCT − ai) ∈ (0, 1] (all workers are

covered). Let us define dec cheater , αw mini{WPC + ai} and dec honest ,
αw mini{WBY−WCT −ai}. From transitions (1) and (2) we derive the following
lemma.

Lemma 7. Let r be a round in which the master audits, and F be the set of
cheaters in round r. Then,

prCi ≤ 1− αw(WPC + ai) ≤ 1− dec cheater, ∀i ∈ F
prCj ≤ 1− αw(WBY −WCT − aj) ≤ 1− dec honest, ∀j /∈ F

Denoting the sum of all cheating probabilities before a round r as P r−1 ,
∑
i

pr−1
Ci .

Lemma 8. Let r be a round in which the master audits such that P r−1 > n/3. If
dec cheater ≥ dec honest and dec cheater+3·dec honest ≥ 8/3, then P r ≤ n/3
with probability at least 1− exp(−n/96).

Let us now define deci , αw min{ai,WBY−WCT −ai}. Let, dec , mini deci.
Assume WPC ≥ 0 and ai ≥ 0, for all workers.

Lemma 9. Consider a round r such that P r−1 ≤ n/3. Then, with probability
at least 1− exp(−n/36) each worker i has prCi ≤ max{0, pr−1

Ci − dec}, and hence
P r ≤ n/3.

Lemmas 6–9 lead to the following result:

Theorem 4. Assume αw(WPC+ai) ∈ [0, 1] and αw(WBY −WCT −ai) ∈ (0, 1]
for all workers i. (Observe that all workers are covered.) Let dec cheater ,
αw mini{WPC + ai}, dec honest , αw mini{WBY − WCT − ai}, and dec ,
αw mini{ai,WBY − WCT − ai}. If p0

A = p > 0, dec cheater ≥ dec honest
and dec cheater + 3 · dec honest ≥ 8/3, then eventual convergence is reached
in at most ln(1/ε1)/p + 1/dec rounds, with probability at least (1 − ε1)(1 −
exp(−n/96))(1− exp(−n/36))1/dec, for any ε1 ∈ (0, 1).

5 Simulations

In this section we complement the theoretical analysis with simulations. Our
analytical upper bounds on convergence time correspond to worst case scenarios.
Here we present simulations for a variety of parameter combinations likely to
occur in practice. We have created our own simulation setup by implementing
our mechanism; technical details can be found in [17]. Each depicted plot value
represents the average over 10 executions of the implementation.

We choose sensible parameter values, likely to be encountered in real appli-
cations. In particular, the number of workers has been set to nine (providing
majority). Nine workers seems like an appropriate workforce, compared to Seti-
like systems using three workers. The initial cheating probability of each worker
i is not known, and therefore we have set it at pCi = 0.5 as a reasonable as-
sumption. Similarly, we have set pA = 0.5 as the master’s initial probability of
auditing. The minimum probability of cheating is set to be pminA = 0.01 and
tolerance τ = 0.5, hence the master will not tolerate a majority of cheaters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000 1200 1400 1600

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b) (c)

Fig. 1. Cheating probability for the workers as a function of time (number of rounds)
for parameters WPC = 0, WCT = 0.1 and ai = 0.1. (a) α = 0.01, WBY = 1; (b)
α = 0.1, WBY = 1; (c) α = 0.1, WBY = 2.

The payoffs for the workers are set using WBY ∈ {1, 2} as our normalizing
parameter and we take in analogy WPC = 0 and WCT = 0.1 as realistic values to
explore the effects of these choices. The aspiration is a parameter defined by the
workers in an idiosyncratic manner; for simplicity, here we consider all workers
having the same aspiration level ai = 0.1. The values of the aspiration and WCT
satisfy the necessary conditions of Theorem 1 and hence eventual convergence
is reached. Finally, we consider the same learning rate for the master and the
workers, i.e., α = αm = αw. The learning rate, as discussed for example in [15]
(called step-size there), for practical reasons it can be set to a small constant
value; experimentally we notice that high values make the learning unstable. So
we consider α ∈ {0.1, 0.01}. A rich account of our results, on several scenarios
under different parameter values (providing as well more intuition on system
parameters e.g., tolerance) can be found in [17].

Figure 1 shows that convergence can be reached very quickly (in a few hun-
dred rounds) even if no punishment is given to the workers caught cheating, and
the number of workers and WBY are small. We also notice that a slightly higher
value of α can make the convergence time shorter.

Comparing Figures 1(b) with 1(c) we observe that for a specific set of pa-
rameter values, a larger WBY leads to a shorter convergence time. Interestingly,
this observation points out to a trade-off between convergence time and the cost
the master has for reaching faster convergence and maintaining it. In this way,
the master could choose between different protocols estimating the cost of the
auditing during the whole interval to convergence: less auditing leads to larger
convergence times, so it is not clear in principle what is going to be optimal.

6 Conclusions

This work applies reinforcement learning techniques to formulate the evolution
of Internet-based master-worker computations. The mechanism developed is pre-
sented and analyzed. In particular we show that under necessary and sufficient
conditions, the master reaches a state after which the correct task result is re-
ceived at each round, with minimal cost. In addition we show that such state
can be reached quickly. The convergence analysis is complemented with simula-
tions; our simulation results suggest that when having a positive reinforcement
learning (i.e., WPC = 0) the master can reach fast convergence, while apply-

ing negative reinforcement learning (i.e., WPC = {1, 2}) provides even faster
convergence (see [17]). In fact, we may conclude that applying only negative
reinforcement is enough to have fast convergence.

Acknowledgments: This work is supported by the Cyprus Research Promo-
tion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, NSF grants CCF-0937829,
CCF-1114930, Comunidad de Madrid grant S2009TIC-1692, Spanish MOSAICO
and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National
Natural Science Foundation of China grant 61020106002. We thank Carlos Diuk
for useful discussions.

References
[1] I. Abraham, D. Dolev, R. Goden, and J.Y. Halpern. Distributed computing meets

game theory: Robust mechanisms for rational secret sharing and multiparty com-
putation. In proc. of PODC 2006, pp. 53–62.

[2] D. Anderson. BOINC: A system for public-resource computing and storage. In
proc. of GRID 2004, pp. 4–10.

[3] J. Bendor, D. Mookherjee and D. Ray. Aspiration-based reinforcement learning
in repeated interaction games: An overview. International Game Theory Review,
3(2-3):159–174, 2001.

[4] R. R. Bush and F. Mosteller. Stochastic Models for Learning, Wiley, 1955.
[5] C. F. Camerer. Behavioral game theory: Experiments in strategic interaction.

Roundtable Series in Behavioral Economics, 2003.
[6] D.Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a

Highly Connected World, Cambridge University Press, 2010.
[7] A. Fernández, Ch. Georgiou, L. Lopez, and A. Santos. Reliably executing tasks in

the presence of untrusted processors. In proc. of SRDS 2006, pp. 39–50.
[8] A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Designing mechanisms for

reliable Internet-based computing. In proc. of NCA 2008, pp. 315–324.
[9] A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Algorithmic Mechanisms

for Internet-based Master-Worker Computing with Untrusted and Selfish Workers.
In proc. of IPDPS 2010, pp. 1–11.

[10] M. C. Gintis. Game Theory Evolving, Princeton University Press, 2000.
[11] J. Maynard Smith. Evolution and the Theory of Games, Cambridge U. Press, 1982.
[12] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic

Behavior, 35:166–196, 2001.
[13] S. Phelps, P. McBurney and S. Parsons. Evolutionary mechanism design: A review.

Journal of Autonomous Agents and Multi-Agent Systems, 2010.
[14] J. Shneidman and D.C. Parkes. Rationality and self-interest in P2P networks. In

IPTPS 2003, pp. 139–148.
[15] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning, Morgan & Claypool publishers, 2010.
[16] M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks. Homogeneous redundancy:

a technique to ensure integrity of molecular simulation results using public com-
puting. In proc. of IPDPS 2005.

[17] Technical report of this work, TR-12-02, Dept. of Computer Science, University
of Cyprus, February 2012. http://www.cs.ucy.ac.cy/~chryssis/EvolMW-TR.pdf

[18] M. Yurkewych, B.N. Levine, and A.L. Rosenberg. On the cost-ineffectiveness of
redundancy in commercial P2P computing. In proc. of CCS 2005, pp. 280–288.

