Tempo-toolkit: Tempo to Java Translation Module

Chryssis Georgiou*, Peter M. Musialf, and Christos Ploutarchou*
* University of Cyprus, Nicosia, Cyprus
Email: {chryssis, christos.ploutarchou}@cs.ucy.ac.cy
TMIT-CSAIL and EMC?2, Cambridge, MA, USA
Email: {pmmusial}@csail.mit.edu

Abstract—TIOA is a formal language for modeling distributed,
concurrent, and timed/untimed systems as collections of interact-
ing state machines, called Timed Input/Output Automata. TIOA
provide natural mathematical notations for describing systems,
their intended properties, and the relationships between their
descriptions at varying levels of abstraction. The Tempo toolKkit is
an implementation of the TIOA language and a suite of tools that
supports a range of validation methods for description of systems
and their properties, including static analysis, simulation, and
machine-checked proofs. The tools are implemented as Eclipse
plugins. In this paper we introduce a new plugin of the toolkit,
the Tempo-to-Java compiler, which automatically translates high-
level Tempo specification into executable Java code for various
distributed platforms. The translation process is verified to
preserve the formal properties of the source specification, hence
leading to generated code which is correct by construction.

Keywords—Design tools and techniques, Automatic code gen-
eration, Distributed programming, Verifiable translation.

I. INTRODUCTION

Motivation. Developing dependable distributed systems for
modern computing platforms continues to be challenging.
While the availability of distributed middleware makes feasible
the construction of systems that run on distributed platforms,
ensuring that the resulting systems satisfy specific safety,
timing, and fault-tolerance requirements remains problematic.
The middleware services used for constructing distributed
software are specified informally and without precise guar-
antees of efficiency, timing, scalability, compositionality, and
fault tolerance. Current software-engineering practice limits
the specification of such requirements to informal descrip-
tions. When formal specifications are given, they are typically
provided only for the system interfaces. (Middleware inter-
face syntax is usually strongly defined, where computational
semantics are often defined superficially.) The specification
of interfaces alone stops far short of satisfying the needs of
users of critical systems. Such systems need to be equipped
with precise specifications of their semantics and guaranteed
behavior. When a system is built of smaller components, it is
important to specify the properties of the system in terms of
the properties of its components.

We view formal specification and analysis as valuable tools
that should be at the disposal of the developers of distributed
systems. However, theoretically sound specifications have a
limited impact, unless tools exist that automatically transform
these specifications from high-level notation to executable
code. Only if such tools are formally scrutinized, then the
resulting executable code can be deemed as reliable and
verifiably correct.

At the core of this work is the Tempo framework and

its toolkit [1] developed by VeroModo, Inc. [2]. Tempo is
derived from the formal mathematical modeling framework
called Timed Input/Output (I/O) Automata [3] that is well
established in the theoretical distributed computing research
community and has been used to specify and reason about a
plethora of distributed and concurrent algorithms, e.g., [3]-[8].
Systems in this framework are specified in terms of interacting
timed automata. The Tempo language [9] closely matches
semantics of the Timed I/O Automata modelling framework
and hence it inherits the rich set of capabilities for system
modeling and analysis.

The Tempo toolkit contains tools to support analysis of
systems such as, the front-end that checks syntax and performs
static semantic analysis; a simulator to explore execution traces
for an automaton; a translation module to the UPPAAL model-
checker [10]; and a translation module to the PVS interactive
theorem prover [11]. The reader is welcome to experiment with
these tools, but we do not make any claims about them in this
work; we only concentrate on the translation module to Java
which we introduce in this paper.

Our Contribution. Our work involves the development and
implementation of a strategy for generating distributed exe-
cutable Java programs from Tempo specifications, and proving
that this strategy preserves the correctness of the source
specifications, provided these adhere to certain constraints.

Conceptually, our work can be considered a non-trivial
extension of the work in [12], [13], where a strategy for
transforming un-timed IOA specifications into Java program
was developed (more details are given in Section II). Specif-
ically, the main contribution of our work is the incorporation
of time (trajectories) into the transformation methodology.
Besides some coding effort in doing so, the main challenge was
to prove the correctness of the transformation, which needed
to adhere to the trajectory axioms (given in Section IV). In
fact, en route in proving the transformation’s correctness, we
proved a time-based theorem (Theorem 1) that we believe it
is applicable beyond our work. We also needed to restrict the
source specification that allow layering of time, as the time in
TIOA is logical and hence different from the lower level time
of Java. From a programming aspect, we did not extend the
code of the (non-time) IOA complier to model time, but instead
we wrote the compiler from scratch. The resulting compiler
is now modular and well-structured which makes debugging
and future extensions an easier task. As an example of the
modularity of the code, is the extension of the compiler to
support, besides MPI, also TCP communication, which enables
the compiler to develop and run programs over LANs and
WANSs (MPI restricts the execution of programs only in LANSs).

As a proof-of-concept implementation, we have used the
compiler to implement and evaluate several timed distributed
algorithms, including a distributed clock synchronization al-
gorithm we use here as a running example. (Details on all
implemented algorithms, including Paxos [6], can be found
in the technical report [14].) Our translation tool has been
successfully used and tested in the classroom setting at MIT
and the University of Cyprus, both at undergraduate and
graduate level.

Document Organization. In Sect. II we provide necessary
background and briefly describe related work. In Sect. III we
describe our translation method. In Sect. IV we overview the
correctness of the translator; we argue that the resulting Java
code preserves the correctness of the source specification. In
Sect. V we use the translator to generate two implementations
of the running example, where one uses MPI and the other
TCP for communication. We conclude in Sect. VI.

II. BACKGROUND

As mentioned, our work is based on the Timed Input/Out-
put Automata or TIOA [3] framework. Even though a user
might be completely unfamiliar with this framework, it is
relatively easy to learn and use it, within only a few weeks
(cf. [15]). Below we provide information which should be
sufficient for one to follow the ideas behind the presented
translation module (of course, the more familiar the reader
is with TIOA the easier to follow these ideas).

The TIOA framework provides a mathematical basis for
modeling and reasoning about distributed systems (both timed
and untimed). The flexibility and the power of this framework
contribute as follows: (i) The system designer has the flexibility
of using nondeterminism to allow multiple correct specifica-
tions of its system, hence relaxing assumptions on behaviors
of the environment in which the system operates (at least
at certain parts of the execution). (ii) Complex systems can
be decomposed into subsystems, where composition of these
subsystems yields the unified complex system. Such structured
design enables one to view specifications at multiple levels of
abstraction.

TIOA model behavior of systems of interacting compo-
nents (i.e., automata), where system components operate in
discrete steps, and timing-related components whose behav-
ior includes continuous transformation over time. For timed
components, when the transformation reaches its stopping
condition, the time, which in TIOA is simply a set of real
numbers where the time progresses over these, stops to allow
one or more discrete interactions which are assumed to be
instantaneous. Hence, in TIOA the notion of time is a logical
abstraction and not physical; the fact that time is abstract and
can stop is a clear departure from the standard meaning of time,
and it needs to be handled carefully when deriving executable
code (handling time was the main challenge of our work).

More formally, a Timed I/O Automaton is a labeled state
transition system. It consists of a (possibly infinite) set of
states (including a non-empty subset of start states); a set
of discrete actions, classified as input, output, or internal; a
transition relation, consisting of a set of (state, action, state)
triples (these specify the effects of the discrete actions); and
a set of trajectories describing state evolution over time.
Specifically, a trajectory is a continuous or discontinuous

function that describes the evolution of the state variables over
interval of times. An action is enabled if its preconditions are
satisfied; input actions are always enabled. TIOA support the
composition operation by which TIOAs modeling individual
timed system components can be combined to produce a model
for a larger timed system.

Prior development. The Input/Output Automata (IOA) frame-
work [4] and its IOA toolkit [16] is the predecessor of the
TIOA framework and allows modeling of untimed systems
only. Using the IOA notation, a wide range of systems can be
specified and reasoned about and the IOA toolkit supports the
design, development, testing, and formal verification of concur-
rent untimed systems. The TIOA toolkit is no longer supported
and it is not easily expandable to support the development
of new tools. Despite its shortcomings, the theoretical work
developed during creation of the IOA toolkit is instrumental to
the activities of this work. Specifically, it defines the limitations
on the kind of specifications that are allowed for compilation to
executable code. These limitations apply in our work as well;
however, as we discuss later, further restrictions are imposed
by our work for handling time.

The pragmatic benefits of transitioning from IOA to Tempo
are as follows: Syntactically the IOA notation evolved (into
Tempo notation) and its syntax is now more refined and
standardized. Implementation-wise the key difference is that
Tempo uses a flexible design that takes advantage of standard
technologies, such as the ANTLR grammar parser, abstract
syntax tree representation, Java’s visitor pattern, and plugin
support. Aesthetically users will enjoy a nice Tempo interface
built atop the familiar Eclipse Rich Client Platform. The
theoretical contribution of this work, as already mentioned,
is incorporating time (i.e., trajectories) into the translation
methodology. This presents also some coding challenge (e.g.,
stopping trajectories across all components), but more impor-
tantly, it significantly complicates correctness reasoning of the
translation.

Related work. The CCS process algebra [17] and IOA frame-
works share several similarities as well as many differences:
the work in [18] presents a semantic-based comparison of the
two frameworks. The Concurrency Factory [19] is a toolkit for
the analysis of finite-state concurrent systems specified as CCS
expressions; it includes support for verification, simulation,
and compilation. The compilation tool translates specifications
into Facile code. The Nuprl proof development system [20]
and its toolkit [21] present another relevant body of work.
In [22] a framework consisting of Nuprl, IOA, and the OCaml
programing model have been used to verify certain properties
of Ensemble [8], a group communication system and its
implementation. Also the Nuprl toolkit supports translation
modules to both Java and OCaml. A contribution of [22]
was its formal approach to inheritance and its semantics. In
contrast, we place TIOA at the center and use its notation to
model systems and its mathematical support for verification.
The Tempo toolkit implements a software framework around
TIOA with native analysis and translation tools and integration
of external verification environments.

Times [23] is a prototype C-code generator based on
the legOS operating system applied to develop the control
software for a production cell for models specified in Timed
Automata [24]. It is appropriate for systems that can be

described as a set of tasks which are triggered periodically or
sporadically by time or external events. The toolkit produces
software with predictable timing behaviours, i.e. code which
is known a priori to satisfy given timing constraints. To our
knowledge, the Times compiler does not support the generation
of distributed code (e.g., it does not support the integration of
a communication medium such as MPI or TCP).

III. FROM TEMPO SPECIFICATION TO JAVA CODE

We now detail how one, starting from a distributed algo-
rithm, can use our translation module to obtain executable java
code, while preserving the correctness of the algorithm. As
a running example we use a simple Clock Synchronization
algorithm as specified in [3], which we overview next.

Clock Synchronization. The TIOA specification of a process
1 is given in Listing 1 as taken from [3, Section 4.1]. Each
process has a physical clock (physclock) and generates a
logical clock (logclock). The goal of the algorithm is to
achieve agreement and validity among the logical clock values;
agreement means that the logical clocks are close to one
another and validity that the logical clocks are within the
range of the physical clocks. The algorithm is based on
the exchange of physical clock values between the processes.
Parameter u determines the frequency of sending messages
and 7 is the index of the process. State variable physclock
may drift from the real time with rate bounded by r. The state
variable maxother is used for keeping track of the largest
physical clock value received by other processes. The state
variable nextsend records when process ¢ is supposed to send
its physical clock value to the other processes. The logical
clock, logclock, is defined to be the maximum of maxother
and physclock; it is a derived variable (i.e., a variable whose
value is derived by state variables).

A send(m, 1) transition is enabled when m = physclock
and nextsend = physclock. It causes the value of nextsend
to be updated such that the next send occurs when physclock
has advanced by w time units. The transition definition for
receive(m, j,1) specifies the effect of receiving a message
from another process j. Upon the receipt of a message m
from j, process ¢ sets maxother to the maximum of m and
the current value of maxother, thereby updating its knowledge
of the largest physical clock value of the other processes. The
analog variable physclock does not change at the same rate
as real time but it drifts with a rate that is bounded by r.
The periodic sending of physical clocks to other processes
is enforced through the stopping condition in the trajectory
specification; time is not allowed to pass beyond the point
where physclock = nextsend.

automaton ClockSync (u,r: Real , i: Index)
signature
external send (m: Real , const i: Index),
receive (m: Real , j: Index , const i: Index)
where j != i
states
nextsend : discrete Real := 0,
maxother : discrete Real := 0,
physclock : Real := 0

initially u> 0 /\ (0 <=1 < 1)

derived variables
logclock = max (maxother
transitions
external send (m,i)
pre m = physclock /\ physclock = nextsend eff
nextsend := nextsend + u

, physclock)

external receive (m,j,i)

eff maxother := max (maxother ,m)
trajectories
stop when physclock = nextsend

evolve (1 — r) <= d(physclock) <= (1 + r)

Listing 1. Clock Synchronization TIOA

We now present the translation steps in detail.

1. Downloading the toolkit and creating a project. The
Tempo toolkit as well as all translated examples including
Clock Synchronization can be downloaded from the Tempo
website [2]. Installation and configuration information can
also be found there; an installation wizard make the process
quite straightforward. The toolkit can be installed on Windows
7 OS, Mac-OSX and Linux OS. All examples are located
under tab Samples as a .zip file, containing all required .tioa
to compile a specific algorithm. Once the Tempo toolkit is
installed and configured, a project can be created. A link to
a video demonstrating a project setup is under tab Videos. In
our example, we created a project named ClockSync.

2. Selecting the communication medium and specifying
the algorithm. After a project is created, it can be populated
with specification files, which must have a .tioa extension.
The algorithm to be implemented must be specified in the
Tempo language. As mentioned, Tempo is very similar to the
TIOA language, which in turn can be learned quite easily
(cf. [15]). Before specifying an algorithm in Tempo, the
communication medium needs to be decided; depending on
the chosen medium, the appropriate automata and vocabular-
ies should be included in the project. Currently, the Tempo
translator supports two types of point-to-point channels: (i)
a FIFO, reliable channel implemented over MPI, and (ii) a
dynamic! channel implemented over TCP. (We are working
on providing additional channel alternatives, such as multicast
channels.) Specification files for both MPI and TCP can be
found in [2]. Listing 2 depicts the corresponding Tempo
specification of Clock Synchronization Algorithm using MPI
as communication protocol between participating processes.

automaton ClockSync(u, r:
signature
output SEND(m: Null[mpi_message])
input RECEIVE(m:Null [mpi_message])
internal prepmessages, init
states
nextsend :

DiscreteReal)

DiscreteReal 0;
maxother : DiscreteReal 0;
physclock : DiscreteReal := 0;
tosend : Seq[Null[mpi_message]]
rates : Array[Nat,DiscreteReal] :
index : Nat := 0;
initially u>=0/\ (0 <=1 /\ 1 <= 1);

transitions
output SEND(m) where len(tosend) "= 0

pre m = head(tosend);
eff tosend := tail (tosend);
input RECEIVE (m)
eff if (m "= nil()) then
maxother := max(maxother, val(m).data); fi
internal prepmessages
pre len(tosend) = 0;

constant (1);

eff nextsend := nextsend + u;
for n : Nat where n < MPI_Size() do
tosend := tosend |— embed([physclock, n]);
od

index := mod(index + 1, 50);
internal init

IThe Java API for the TCP socket classes implement convenient methods of
sending object data with initially unknown size that changes during execution

locals v
pre true;
eff
for n : Nat where n < 50 do
v := choose n; % where I-r <=n /\ n< 1 + r;

DiscreteReal := 0; b : Bool := false;

if v>r then v := r; fi
b := choose n;
if b then
rates[n] := rates[n] + 1 + v;
else
rates[n] := rates[n] + 1 — v;
fi

od;

trajectories
trajdef T stop when physclock > nextsend;
evolve d(physclock) = rates[index];

Listing 2. Clock Synchronization Tempo version

As you verify by comparing the two versions of the
algorithm, the differences between TIOA and Tempo are
not significant. For example, u and r parameters that were
declared as type of Real in TIOA, are defined in Tempo
as DiscreteReal. The Tempo framework provides a set of
built-in data types and operations specified as vocabularies.
However, users can define and import, if needed, abstract
data types through the association of types and operations
within their own vocabulary definitions. The point-to-point
channels are modeled in Tempo as a composition of the
SendMediator and ReceiveMediator automata and
based on the chosen communication protocol specific auxiliary
automata should be used. In case of MPI, these are the fol-
lowing: SendMediator.tioa (Listing 3), ReceiveMediator.tioa,
(Listing 4), MPIVocabs.tioa (Listing 5), and mpi_message_voc,
mpi_request_voc, mpi_status-voc, mpi_voc, alg_specific_voc
as defined in Listing 5.

automaton SendMediator

signature
input SEND(m: Null [mpi_message])

states
status : Array[Nat, Null[mpi_request]] :=
constant(nil ());
clock : AugmentedReal := 0;

transitions
input SEND(m)

eff

if (m "= nil()) then
status [val (m). destination] := MPI_Isend(val(m),
val (m). destination);

fi

trajectories
trajdef DELAY evolve d(clock) = 1;

Listing 3. SendMediator TIOA

automaton ReceiveMediator
signature
output RECEIVE(m: Null [mpi_message])
input probe(s:Nat)
states
toRecv:Seq[mpi_message] := {};
transitions
output RECEIVE(m) where len(toRecv) = 0
pre m = nil ();
output RECEIVE(m) where len(toRecv) "= 0
pre m = embed(head(toRecv));
eff toRecv := tail (toRecv);

input probe(s)
locals status:Null[mpi_status] := nil ();
eff
status := MPI_Iprobe(s);
if (status "= nil()) then
if (MPI_Test(val(status))) then
toRecv := toRecv |— MPI_Irecv(val(status),s);

fi
fi

Listing 4. ReceiveMediator TIOA

The communication channels for both protocols are already
specified and are part of the translation model. Notice that
the type of a parameter in the send and receive actions is
Null [mpi_message]. This means that the legal values of
these parameters can be all values in mpi_message plus the
special value nil. When passing a nil value to the send
action, this results in a no-operation semantics as the send
mediator will not send a nil-message. The receive mediator
on the other hand will return a ni1 message in the case where
there are no more messages pending delivery.

99% .: algorithm vocabs

vocabulary alg_specific_voc
types %Index Enumeration [pl, p2, p3, p4],
Data : DiscreteReal

end

vocabulary mpi_voc
operators MPI_Rank
end

: —> Nat, MPI_Size : —> Nat

vocabulary mpi_request_voc
imports mpi_message_voc
types mpi_request

operators
MPI_Isend mpi_message , Nat —> Null[mpi_request],
MPI_Barrier : —> Bool

end

99%% .:MPI Channel vocabs:.
vocabulary mpi_status_voc
types mpi_status
operators MPI_Iprobe
Nat —> Null[mpi_status],
MPI_Test mpi_status —> Bool
end

9%% .: algorithm vocabs
vocabulary mpi_message_voc
imports alg_specific_voc, mpi_status_voc
types mpi_message Tuple[data:Data, destination : Nat]
operators
MPI_Irecv mpi_status , Nat —> mpi_message
end

Listing 5. MPI Vocabularies
Guidelines and more information about the Tempo lan-
guage and the mediator automata can be found in [14].

3. Composition. In the Tempo model, all auxiliary mediator
automata created to implement abstract system services are
combined with the source automaton through composition; this
is the next step in the process of translating an algorithm from
Tempo to Java. The composition happens at runtime, where
all automata interfaces and pass parameters are matched in the
process. Specifically, our compiler performs action matching
of the composed automata within its components. Action
matching is restricted to actions that have fixed and a priori
known parameters with strict one-to-one type correlation. The
user only needs to create a new .tioa file, importing and
including all required automata for composition. In our exam-
ple, ClockSync.tioa should be composed with MPIVocabs.tioa,
ReceiveMediator.tioa and SendMediator.tioa resulting to the
new automaton ClochSyncSys.tioa as shown in Listing 6 which
will be fed into to the tempo to java compiler (after its syntax
is checked). Prior to this, non-determinism should be resolved
as we explain next.

99% .: VOCABS :.

include ”"MPIVocabs. tioa”

imports mpi_message_voc, mpi_request_voc,
mpi_voc, alg_specific_voc

mpi_status_voc ,

99%% .: ALG AUTOMATON :.
include ”ClockSync.tioa”

9% .: MPI AUTOMATA :.
include ”ReceiveMediator.tioa”, ”SendMediator.tioa”

automaton ClockSyncSys(u, r:
components
CS : ClockSync(u,r); SM
RM : ReceiveMediator;

DiscreteReal)

: SendMediator;

schedule
states m : Null[mpi_message] := nil(); runs : Nat := 100;
do
fire internal CS.init;
for i :Nat where i < runs do
follow CS.T duration \infty;
fire internal CS.prepmessages;
for j :Nat where j < MPI_Size() do
fire output CS.SEND(m);
od

follow SM.DELAY duration (MPI_Size() * 10);

for j :Nat where j < MPI_Size() do
m := nil ();
fire input RM.probe(j);
fire output RM.RECEIVE(m);
od od od

Listing 6. Clock Synchronization Composed Tempo version

4. Schedule. Since the Tempo framework is inherently non-
deterministic, translating programs written in Tempo language
into an executable language such as Java requires resolving all
nondeterministic behaviors. This process is called scheduling
and is the last but not least step before the translation.
Developing a method to schedule automata, which is a meta-
data appended to the automaton that we desire to execute,
is the key conceptual challenge in the initial design of our
code generator. In general, it is computationally infeasible
to schedule Tempo programs automatically. Instead, Tempo
provides constructs specified in the nondeterminism resolution
language (NDR) [25] that enable resolution of nondeterminism
through which developers can schedule automata directly and
safely. This schedule outlines the sequence of actions that will
be invoked by nodes of the system during execution. Usually,
it is sufficient to schedule actions in a round-robin fashion
(which yields fair schedules); learning to write such schedules
requires little effort. The schedule we developed for the Clock
Synchronization algorithm is presented in Listing 7. A node, 1,
participating in the clock synchronization system will behave
according to its schedule.

schedule
states
m : Null[mpi_message] := nil ();
runs : Nat := 100;

do

fire internal CS.init;
for i :Nat where i < runs do
follow CS.T duration \infty;
fire internal CS.prepmessages;

for j :Nat where j < MPI_Size() do
fire output CS.SEND(m);
od

follow SM.DELAY duration (MPI_Size() * 10);

for j :Nat where j < MPI_Size() do
m := nil ();
fire input RM.probe(j);
fire output RM.RECEIVE(m);
od
od
od

Listing 7. Clock Synchronization Schedule

5. Checking the syntax. The front-end of the tool is used to
parse the final specification and check its syntactic correctness.
If there are no errors the checked specification can be proved
to be correct, either manually or using the automated theorem
prover provided by the toolkit (as mentioned, this is beyond
the scope of this work). If the source specification will be used
to generate networked code (as with our example), then prior
to generating Java code the user must configure the translation
module with the type of the channel to be used (either MPI or
TCP) (of course this selection must match the one in Step 2).

6. Compilation. The translation process from Tempo to Java is
performed either by selecting the corresponding button in the
GUI or through Tools — Run tempoZ2java. After compilation
in the navigator pane, a new directory will appear which is
the folder that includes the generated Java code. The name of
this directory is derived from the top level automaton found
in the project. In our case, the main automaton is called
ClockSyncSys.tioa, and hence the generated directory
is named ClockSyncSys. java. Eclipse Java development
environment can be used to verify and compile the translated
Java code (from the ClockSyncSys. java directory). Note
that in addition to the GUI, the Tempo toolkit also provides
a command line interface, where tools are selected using a
parameter flag along with any other tool specific parameters,
for example, -plugin=tempo2java —comm=MPI.

Restrictions. The expressiveness of Java and hardware lim-
itations impose restrictions on the set of Tempo (source)
specifications admitted for translation. For instance, the source
specifications must be in the node-channel form [12] where the
specification provides components running on a node, and it
interfaces with other nodes via a network protocol, such as MPI
or TCP [14] (all specifications presented in this paper follow
this form). Moreover, it is the responsibility of the Tempo
programmer to decide on the distribution of computation for
the intended deployment setting. Given the generality of the
Tempo framework, each networked component can run a dif-
ferent node algorithm, hence in that case compilation proceeds
on a node-by-node basis. Alternatively, a node algorithm could
be general enough to allow it to be executed on any number
of nodes. Java, as the target programming language, ensures
portability of the generated programs (through specialized Java
Virtual Machines) and hides architectural specifics.

We now discuss some restrictions related to handling time.
In TIOA, all actions take zero time (they are instantaneous)
which is not true for the actual implementation. The duration
of discrete transitions is not accounted for in the trajectory.
However, this is not a real problem since trajectories, are
already discussed, are with respect to logical time, not physical
time. As an example, consider the receive action, where if there
are no messages to be received, then the receiver will time-out
while waiting on the socket. Another timing issue to consider
is that due to the discrete nature of Java types, the trajectory
bounds must be mindful of floating point precision.

The translation process of Tempo to Java along with low-
level technical issues are presented in depth in [14]. Next
we argue that the generated Java code can be viewed as a
specialization of the source specification, and that the set of
its allowed behaviors solves the same problems as the source
specification. Hence, the resulted code is proved correct by
construction.

IV. TRANSLATION’S CORRECTNESS
We now overview the translation’s correctness. The com-
plete proof is given in [14]. The proof of correctness fol-
lows [27], where it presents a framework for an incremental
proof technique for untimed systems that was applied, among
other things, to a translation of a group communication service
into its implementation using C++.

Throughout this section we refer to the source model as
a parent specification (or simply parent) and the abstracted
Java code derived by translating the parent specification as
a child implementation (or simply child). The work in [27]
introduced the specialization and extension operations on the
parent which result in the child implementation; it can be
shown that following application of these operations on the
parent the derived child can be used anywhere the parent can
be used. Here we extend these operations to support timed
systems (this is one of our key contributions). We begin with
a formal definition of TIOA as presented in [3].

Definition 1: A timed automaton A is defined as A =

(X,9,0,E,H,D,T), st. X is a set of internal variables;,
Q C wal(X) is a set of states, where informally val(X)
represents the set of values over types of X; © C Q is a
nonempty set of start states; I is a set of external actions
and H is a set of internal actions, where £ N H = {;
D C Qx (EUH)x Q is a set of discrete transitions;
and 7 C trajs(Q) is a set of trajectories, where informally
trajs(Q) represents the set of all trajectories for variables
in X.
Trajectory axioms: For some 7 € T we associate states, such
that 7. fstate = x € Q at the start of 7. If 7 is closed, then
T.lstate = 2’ € Q where 2’ is the state of A at the end of
7 and T7.ltime is the duration of 7. When 7. fstate = x and
T.Astate = 7’ and x,z’ € Q, then the following axioms must
hold: TO If x € Q then there exists a point trajectory T such
that duration of 7 is zero and 7.fstate = T.lstate = z. T1
For every 7 € T and every 7/ < 7, 7/ € T, asserting a prefix
closure. T2 For every 7 € 7 and every ¢ in the domain of T,
Tt € T, asserting a suffix closure (i.e., that the remainder
is also a trajectory). T3 Let 79 74 72 ... be a sequence of
trajectories in 7 such that, for each nonfinal index 4, 7; is
closed and 7;.Istate = 7;41.fstate. Then 1 ~ T3 —~T9... €
T, asserting a concatenation closure.

A forward simulation relates states of two automata
(from [3]), which asserts that each discrete transition (resp.
trajectory) of A can be simulated by a corresponding execution
fragment of S with the same trace and duration, and leads to
the trace inclusion property.

Definition 2: Let A (child) and S (parent) be two automata
with the same external signature. A relation R C Q4 X Qg is
a forward simulation from A to S if it satisfies the following
three conditions: (1) If ¢ € © 4, then there exists state s € Og
such that (¢,s) € R. (2) If (t,s) € R and « is an execution
fragment of A consisting of an action surrounded by two point

trajectories, with a. fstate = t, then S has a closed execution
fragment 8 with §.fstate = s, traces(f) = traces(a),
and (c.lstate, B.lstate) € R. (3) If (t,s) € R and «
is an execution fragment of A consisting of a single closed
trajectory, with «.fstate = ¢, then S has a closed execution
fragment 8 with S.fstate = s, traces(f) = traces(a),
and (a.lstate, B.lstate) € R.

The specialization operation presented in [27] is a con-
struct for creating a child by specializing the parent. This
operation is designed to capture the notion of subtyping in
I/O automata in the sense of trace inclusion. The child can
read parent’s state, add new (read/write) state components, and
restrict parent’s transitions. The specialize construct operates
on the parent and the following additional parameters: a
state extension, the new state components, an initial state
extension, the initial values of the new state components, and
a transition restriction, specifying the child’s addition of new
preconditions and effects (modifying new state components
only) to parent transitions. We extend the specialize construct
with a trajectory restriction, specifying the child’s restrictions
on stopping conditions of parent’s trajectories. Formally stated:

Definition 3: (Specialization) Let A =
(X,9,0,E,H,D,T) be an automaton; X, a set of Varlables
and N C val(n) be any set of states, called a state extension;
Ny be a non-empty subset of N, called an initial state
extension; and, TranR C (states(d) x N) x sig(d) x N
be a relation called a tranmsition restriction. Let Vx
be a set of variables in states(d), Vy be a set
of variables in N, V € Vx be such that for each
variable v € V its type is dynamic (ie., dtype(v)),
then TrajR C {7 : dom(r) — dtype(v) A dom(t) —
type(v),Yv € V AVo' € Viy} be a trajectory restriction'.
Then specialize(n)(X,,N, Nog,TranR,TrajR) defines
A =(X",Q,0,F H D, T):

e X'=XUX,,Q=09QxN,0=0xNy, E'=F and
H =H

oD = {(<tpvtn> <t;,t;l>) (tpvﬂ'atp’) € DA
((tp, tn), m,th,) € TmnR} where (t,,t,) is a state in Q’,

e 7' C TrajR the set of all trajectories for variables in X”.

For an automaton A’ as defined above, given t € Q’, we
write t|,, to denote its parent component and t|,, to denote its
new component. If o is an execution fragment of A’ then «,
and «l, denote sequences obtained by replacing each state ¢
in o with ¢|, and ¢t|,,, respectively.

We now reintroduce the specialized extension operation
from [27]. This operation is similar to inheritance, where
the child cannot overwrite parent’s behaviors, but can extend
these with new types of behaviors. Specialized extension is
performed in two steps, first via signature extension and then
by the application of the previously presented specialization
operation. The signature extension operation extends parent
with new actions, where these are enabled in every state and
do not modify the state, where specialization gives meaning to
these actions. The result is a child automaton with extended
signature, but same states and same start states. Additionally,
state extension operation allows action renaming, which is
specified by a signature-mapping function that maps child’s
actions to parent’s actions. This mapping can be many-to-one,

!For a formal definition of dynamic, dtype, and static, type, see [3].

onto, and is undefined for new actions added. For example,
let f be a signature-mapping then for each action in parent’s
signature there is at least one corresponding f(.), and if 7 is
a new action under signature extension then f(7) = L.

Definition 4: Assume A = (X,Q,0,E HD,T), &
to be some signature. Let f be a partial function, called
signature-mapping, from S’ to signature of A such that f
is onto and preserves the classification of actions. Then,
extend(A)(S’, f) is defined to be the following automaton
A/ = (X/7 Ql7 @/’ E/’ H/’ Dl? T/):

e X'=X,0=0,0=0,{FFUH'}=8,T'=T
o D = {(t,m,t') e @ x8 xQ : ((f(m) =L)A(t =
)V ((f(m) # L) A (&, f(m),t) € D))}

Hence, A’ is a signature extension of A with signature-
mapping f if A’ is such that A’ = extend(a)(sig(A’), f)
for some signature-mapping f from signature of A’ .

Definition 5: Automaton A’ is a specialized extension of
A if A’ is a specialization of a signature extension of A.

We are now ready to restate the final result from [27]
in terms of timed automata. In the theorem that follows
we assume that each automaton Aut is defined as Aut =
(XAuta QAutv 9Auta EAutv HAutv DAut7 7—Aut)-

Theorem 1: Let A’ be a specialized extension of Aut
with a signature-mapping f. Let S’ be a specialized ex-
tension of S with a signature-mapping g, such that S’ =
specialize(extend(s(G,g)))(N, No,TR). Assume that
Aut and S have the same external signatures and that Aut
implements S via a simulation relation R,. Assume further
that A’ and S’ have the same external signatures, and that,
for every external action m € A’ g(w) = f(n).

A relation R, C Qar X Qg/, defined in terms of relation
R, and a new relation R,, € Qar x N as {(t,s) : (t|p,s|p) €
Rp A (t,8]n) € Ry}, is a simulation from A’ to S’ if R,
satisfies the following two conditions:

1 For every t € start(A’), there exists a state s|, € R (t)
such that s|, € Np.

2 If ¢ is a reachable state of A, s is a reachable state of S’
s.t. 8|, € Rp(t|p) and s|, € R, (t), and « is an execution
fragment of A’ where a.lstate = t' and consisting of
one action surrounded by two point trajectories, 19 and 7
(1o.lstate = s; and 7). fstate = s;11), or a single closed
trajectory 7, then there exists a closed execution fragment
B of S’ beginning from s and ending at some state s’, and
satisfying the following: (a) 3|, is an execution fragment of
S. (b) For every step (s;, 0, s;+1) in 3, (si, 0, Si+1|n) € TR.
©) s'l, € Ry(t'|p). (d) §'|n € Ry(t'). (e) B has the
same trace as 77, (f) If a = T, then for each 7; € f3,
>, Ti-ltime = T.ltime.

The above constitutes the core result that we use to prove
our translator’s correctness. We emphasize that this result is
general and it can be used beyond our work.

Translation soundness. Since we cannot use Java’s API
in proofs, we have to bring the translator generated codes
into the Tempo framework by providing an abstraction of
the executable code. In [12], techniques are presented that
demonstrate how to abstract the generated Java code by the
IOA translator and prove that the resulting code has the same
externally observable behaviors as the source specification,
where this is done by first reasoning about translation of the

individual node automata (see Theorems 7.1 [12]), and then
at the composition level, i.e. system wide, (see Theorems 7.2
in [12]). Same techniques can be adapted to this work and
used to arrive at the same conclusion for the codes generated
by our Tempo to Java translator. To avoid tedious repetition we
forgo presentation of this detail and refer the interested reader
to [12] and [14].

In the context of translating timed automata models into
executable code, the input model is S and its implementation
is A’ . Given the full details, it is easy to see that our translation
performs specialization and signature extension on the source
specification. It remains to show that these are consistent with
the proceeding results.

Theorem 2: The Tempo to Java translator preserves behav-
iors of the source specification.

Proof sketch: Let A be an abstracted automaton from
the Java code generated by the direct translation of the
allowed Tempo syntax into the Java code. Let A’ =
specialize(extend(A(G, f)))(IV, Ng, TR). Given A and
A’ , the claim follows from Thm. 7.2 of [12] and Thm. 1.

It may be surprising to the reader that a proof for an
untimed model can be so directly applied to the transla-
tion of a timed system. Thus some additional elaboration
is needed. Once we obtain the abstracted Java automaton
from Theorem 1 we are left with a Java code that represents
the source automaton with the added restrictions of the Java
programming language and JVM. The notable new addition is
that of trajectories, however at this point coded trajectories are
a special kind of transitions where are periodically sampled
over some interval until stopping condition or the end of the
interval is reached. Therefore the remaining step is to actually
reason about its execution at the JVM level. Theorem 7.2 [12]
exactly addresses that step and provides the machinery to be
used for reasoning about the individual Java instructions cannot
violate the established relation.

Finally, recall that we are in a node-channel model and
execution of all trajectories is per node. Moreover, the time is
only logical. Therefore, since the same clock is used to drive
the sampling of all trajectories (in the on-node-composition)
the rate at which the logical time is “synchronized” to the rate
of the local physical clock for the JVM of the host node. Hence
the logical timing behavior is preserved.]

V. IMPLEMENTATION

Here we present some experimental results we have ob-
tained after applying the methodology we have described.
This is just a simple proof-of-concept implementation that
demonstrates that our methodology works and produces im-
plementations with reasonable performance; it is not by any
means an evaluation study of the algorithm. We have used a
version of clock synchronization system specialized to MPI
channels and and one specialized to TCP channels. The target
platform consists of a cluster of nine machines, hosted at the
University of Cyprus. Each machine is powered by an AMD
Opteron 2.5GHz (single or dual) CPU and is running Linux
(CentOS v5.5).

Given the specification from Section III where all source
and vocabulary files are placed in some directory the Java
code can be obtained using a GUI or a command prompt
and by running: tempo.sh -plugin=tempo?2java
—comm=MPI myfile.tioa. For the TCP-based model the
-comm flag is TCP.

TABLE 1. MPI AND TCP IMPLEMENTATION: VALUE OF
MAX(physclock,otherclock) AT TERMINATION.

| MPI | Time (ms) [TCP | Time (ms)

node 1 59401.32 | node 1 59400.37
node 2 | 59401.32 | node 2 | 59400.29
node 3 | 59401.32 | node 3 | 59400.31
node 4 | 59401.80 | node 4 | 59401.08
node 5 | 59400.26 | node 5 | 59400.85
node 6 | 59401.17 | node 6 | 59400.85
node 7 59401.17 node 7 59400.85
node 8 | 59400.58 | node 8 | 59400.29
node 9 59402.29 node 9 59400.85

Recall the specification of the clock synchronization sys-
tem from List. 2. In our experiments we choose u = 600
(milliseconds) and = 0.6. Each node repeats the algorithm’s
steps 100 times and the final clock values are recorded. To
execute the MPI version of the code one would use the
following command mpjrun.sh -np 9 -dev niodev
—ea ClockSychSys 600 0.6, where we assume that
MP]J [26] has been installed correctly.

Results in Table I represent the final values of physclock
at each system participant and for both version of the imple-
mentation. The first observation is that the values for both
systems are roughly similar, which is exactly what we expect.
The second observation is that for each system, the clocks of
individual nodes are approximately equal, where the difference
between the maximum and minimum is 2.03 for MPI and 0.79
for TCP. This discrepancy can be explained by the fact that
the translation does not make any attempt at synchronization
across the nodes, since the source specification does not require
it. Per step 1. of the algorithm and natural differences in
the speed of the physical machines, some nodes inevitably
execute faster than others, terminate sooner, and stop sending
messages, therefore, making it impossible for the slower nodes
to synchronize with the fast ones and vice versa.

VI. CONCLUSIONS

There are two practical challenges when modeling with
Tempo. First is resolving nondeterminism and providing
nodes’ schedules. Specifically, the node schedule should be
such that progress is guaranteed despite lack of synchroniza-
tion across nodes and while maintaining the timing guarantees
of the specification. The channel automata have been designed
with as uniform interface as possible and the key differences
appear in the schedule. There may be an initial conceptual
difficulty with Tempo due to its embedded nondeterminism
and ability to describe systems with multiple correct behaviors.
This may be a departure from the deterministic control-flow
diagrams used during software design. An attribute of Tempo
is that its type system and structure of control statements
are similar to the modern imperative programming languages.
Finally, the composition operation on automata can be viewed
as a case of hierarchical inheritance which is a familiar
concepts in object-oriented programming.

As already mentioned, the translation module has been
tested both at MIT and the University of Cyprus at under-
graduate and graduate level. After some initial difficulty, there
was no particular problem, neither with the compositional phi-
losophy of Tempo, nor with the need for writing schedules. We

have received similar comments from students and researchers
from other institutions that have used the translation tool.
The Tempo toolkit is being actively updated, and we are
continuing to improve and extend current functionality. One
of our main aims is to make the generated code as efficient as
possible and improve its human readability. To this respect,
we plan to measure the readability of the generated code
by designing and deploying questionnaire assignments in the
distributed computing courses of our (and possible other)

institutions.
REFERENCES

[1] N. Lynch, L. Michel, and A. A. Shvartsman. Tempo: A toolkit for the
timed input/output automata formalism. Proc. of SIMUTools 2008.

[2] VeroModo, Inc. http://www.veromodo.com.

[3] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory
of Timed I/0 Automata, 2nd edition, Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2010.

[4] N. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[5] S. Gilbert, N. A. Lynch and A. A. Shvartsman. RAMBO: A robust, re-
configurable atomic memory service for dynamic networks. Distributed
Computing, 23(4):225-272, 2010.

[6] R. De Prisco. Revisiting the Paxos algorithm. MS thesis, MIT, 1991.

[71 H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language
for parallel programming of distributed systems. IEEE Transactions on
Software Engineering, 1992.

[8] M. Hayden. Ensemble reference manual. Cornell University, 1996.

[91 N. A. Lynch, S. J. Garland, D. Kaynar, L. Michel, and A. Shvartsman.
The Tempo Language User Guide and Reference Manual, http://www.
veromodo.com/resources/Tempo_Guide.pdf, 2011.

[10] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int.
Journal on Software Tools for Technology Transfer, 1:134-152, 1997.

[11] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS:
Combining specification, proof checking, and model checking. Proc.
of CAV 1996, pp. 411-414.

[12] J. Tauber. Verifiable compilation of I/O Automata without global
synchronization. PhD thesis, MIT, 2005.

[13] C. Georgiou, N. Lynch, P. Mavrommatis, J. Tauber. =~ Automated
implementation of complex distributed algorithms specified in IOA. Int-
1 J. on Soft. Tools for Techn. Transfer, 11(2):153-171, 2009.

[14] P. Musial. Using Timed Input/Output Automata for Implementing
Distributed Systems. Technical report, Cambridge, MA, USA, 2011.
http://www.veromodo.com/resources/Tempo2JavaGuide.pdf

[15] M. Gelastou, Ch. Georgiou, and A. Philippou. On the application of
formal methods for specifying and verifying distributed protocols. Proc.
of NCA 2008, pp. 195-204.

[16] IOA language and toolset. http://theory.lcs.mit.edu/tds/ioa/.

[17] R. Milner. Communication and Concurrency, Prentice-Hall, 1989.

[18] F. W. Vaandrager. On the relationship between process algebra and
Input/Output automata. Proc. of LICS 1991, pp. 387-398.

[19] R. Cleaveland, J. Gada, P. Lewis, S. A. Smolka, O. Sokolsky, and
S. Zhang. The concurrency factory: Practical tools for specification,
simulation, verification, and implementation of concurrent systems.
Proc. of DIMACS Workshop on SPA, pp. 75-89, 1994.

[20] S. Allen, M. Bickford, R. Constable, R. L. Eaton, C. Kreitz, L. Lorigo,
and E. Moran. Innovations in computational type theory using Nuprl.
Journal of Applied Logic, 4(4):428-469, 2006.

[21] Nuprl home page. http://www.nuprl.org.

[22] J. Hickey, N. A. Lynch, and R. van Renesse. Specifications and proofs
for ensemble layers. Proc. of TACAS 1999, pages 119-133.

[23] A Tool for Modeling and Implementation of Embedded Systems, http:
/Iwww.timestool.com.

[24] R. Alur and D.L. Dill. A theory of timed-automata. Theoretical Com-
puter Science, 126(2):183-235, 1994.

[25] J. Ramrez-Robredo. Paired Simulation of I/O automata. MS thesis,
MIT, 2000.

[26] M. Baker, B. Carpenter, and A. Shafi. MPJ Express: Towards Thread
Safe Java HPC. In Proc. of Cluster Computing, pages 25-28, 2006.

[27] D. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. An inheritance-
based technique for building simulation proofs incrementally. ACM
Trans. on Soft. Engin. and Method., 11(1):63-91, 2002.

