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Diagnostic problem solving aims to account for, or explain, a malfunction of a system (human or
other). Any plausible potential diagnostic solution must satisfy some minimum criteria relevant to the
application. Often there will be several plausible solutions, and further criteria will be required to select
the “best” explanation. Expert diagnosticians may employ different, complex criteria at different stages
of their reasoning. These criteria may be combinations of some more primitive criteria, which therefore
should be represented separately and explicitly to permit their flexible and transparent combined usage.

In diagnostic reasoning there is a tight coupling between the formation of potential solutions and
their evaluation. This is the essence of abductive reasoning. This article presents an abductive framework
for diagnostic problem solving. Time-objects, an association of a property and an existence, are used as
the representation formalism and a number of primitive, general evaluation criteria into which time has
been integrated are defined. Each criterion provides an intuitive yardstick for evaluating the space of
potential solutions. The criteria can be combined as appropriate for particular applications to define
plausible and best explanations.

The central principle is that when time is diagnostically significant, it should be modeled explicitly to
enable a more accurate formulation and evaluation of diagnostic solutions. The integration of time and
primitive evaluation criteria is illustrated through the Skeletal Dysplasias Diagnostician (SDD) system, a
diagnostic expert system for a real-life medical domain. SDD’s notions of plausible and best explanation
are reviewed so as to show the difficulties in formalizing such notions. Although we illustrate our work
by medical problems, it has been motivated by consideration of problems in a number of other domains
(fermentation monitoring, air and ground traffic control, power distribution) and is intended to be of
wide applicability.

Key words: diagnostic problem solving, temporal abductive diagnosis, diagnostic solution,
time-object, evaluation criteria.

1. INTRODUCTION

1.1. Significance of Time

Time is often of great significance in diagnostic problem solving. We illustrate this
using examples from the medical domain of skeletal dysplasias and malformation syn-
dromes, developmental disorders that affect the skeletal system to varying degrees. A
simplified description of the skeletal dysplasia spondyloepiphyseal dysplasia congenita
(SEDC) reads as follows:

SEDC presents from birth and may be lethal. It persists throughout life. Symptoms can include:
short stature, owing to short limbs, from birth; mild platyspondyly from birth; absent ossification
of knee epiphyses at birth; bilateral severe coxa-vara from birth, worsening with age; scoliosis, wors-
ening with age; wide tri-radiate cartilage up to about the age of 11 years; pear-shaped vertebral-
bodies under the age of 15 years; variable-size vertebral-bodies up to the age of 1 year; and retarded
ossification of the cervical spine, epiphyses, and pubic bones [italics added].

The italicized text refers to time, directly or indirectly. The references to time points are
absolute and specified with respect to some origin that here is birth. Absolute durations
are specified explicitly or implicitly; e.g., property “SEDC present” persists throughout
a patient’s life, however long that might be. Since SEDC can be lethal, this duration
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could be zero (events birth and death coincide). The occurrences (and hence durations)
of properties “wide tri-radiate cartilage” and “pear-shaped vertebral-bodies,” at the
granularity of years, are approximated through the qualitative expressions “up to about
the age of ...” and “under the age of ...,” respectively. We refer to this characteristic
as absolute vagueness (Keravnou 1995b, 1996¢). Some manifestations express temporal
abnormalities or temporal trends, as in refarded ossification and worsening scoliosis,
respectively. Manifestations like these, in which time constitutes an integral aspect, are
time-objects, associations between properties and existences, e.g., (platyspondyly, from-
birth), where “platyspondyly” is the property and “from-birth” the existence.

As another example, consider a simplified description of the dysmorphic syndrome
morquio:

Morquio presents from the age of 1 year and persists throughout life. Symptoms can include:
short trunk; sloping acetabulae; generalized platyspondyly from the age of 1 year; thoraco-lumbar
kyphosis from the age of 4 years; progressive resorption of the femoral-capital epiphyses from the
age of 2 years onwards; more specifically flatness of the femoral-capital epiphyses appears at
the age of 2 years and persists up to an age between 8 and 15 years, and from then onwards the
ossification of femoral-capital epiphyses is absent [italics added].

There is a temporal trend in this description also. Its abstract expression is “progressive
resorption of the femoral-capital epiphyses” that starts at the age of 2 years and termi-
nates with death. At a finer level of description, the trend is divided into two phases,
one of flatness and one of absence of ossification. The exact meeting point between the
two phases (or change point from flatness to absence) is uncertain and may be at any
time between the ages of 8 and 15 years.

The preceding descriptions of SEDC and morquio give the overall models for these
disorders. Such models need to be temporally adapted to the case under consideration.
For example, morquio presents a different picture for a 1-year-old, a 3-year-old, and a
17-year-old.

The diagnostic task for this domain (Keravnou et al. 1994) is to determine which
skeletal dysplasia or malformation syndrome best accounts for the patient’s condition.
Patient data are largely obtained from radiographs that give discrete snapshots of the
development of the patient’s skeleton. For example, the following data are for a patient
for whom the available radiographs were for the pelvis and the lateral spine at the ages
of 2 and 7 years old and for the hands and the lateral skull at the age of 10 years:

Carpal-bones small at the age of 10 years; femoral-capital-epiphyses abnormal at the age of 2 years;
femoral-capital-epiphyses flat and irregular at the age of 7 years; vertebral-end-plates irregular
at the age of 7 years [italics added].

The patient information is point-based in contrast to the medical knowledge, which is
mainly interval-based. Patient information tends to be grossly temporally incomplete, so
a competent, knowledge-based diagnostic system must be able to process the available
data in an intelligent way. This usually requires an ability to derive abstractions from
the given data that fill in the gaps and can be matched against the model of a disorder
for a patient of that age. For example, a system should be able to conclude morquio
as the explanation of the abnormal observations given earlier even though most do not
appear as such in the model for morquio.

Abstractions for which time plays a central role are called temporal abstractions and
are attracting considerable research interest as a fundamental intermediate reasoning
process for the intelligent interpretation of temporal data in support of tasks such as
diagnosis and monitoring (Haimowitz and Kohane 1996; Kahn et al. 1991; Keravnou
1997; Larizza et al. 1997; Lavrac et al. 1997; Miksch et al. 1996; Nejdl and Gamper
1994; Russ 1995; Shahar 1994; Shahar and Musen 1996; Shahar et al. 1992). Background
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domain knowledge (Keravnou et al. 1992) may be in the form of temporal abstractions;
for example,

The ossification of the cervical-spine normally begins at the eighth week of gestation and termi-
nates by the 25th year [italics added].

This gives a high-level description of the normal ossification process, which spans a chain
of temporal contexts (developmental periods); this becomes apparent once the process
is decomposed into subprocesses at finer levels of description (see Section 3.2). Knowl-
edge of normality serves several purposes in a diagnostic context. First, such knowledge
can be used for establishing whether some observation describes an abnormal situation
and therefore warrants an explanation. The ability to make such discriminations is a
prime requirement of a competent system. For example, the earliest age at which the
primary centers of ossification of the first cervical vertebra are expected to appear is
12 months and the latest 15 months. The nonappearance of these centers for a child
of 10 months is not abnormal. Second, knowledge of normality can be used to further
qualify (abstract) observations of abnormality. For example, the nonappearance of the
centers at the age of 2 years would be abnormal, more specifically a delay in the ossifica-
tion of the vertebra. Similarly, knowledge of normality can be used to refine expectations
of disorder hypotheses, such as the expectation of retardation in the ossification of the
cervical spine for SEDC, to potential observations of abnormality.!

1.2. Article Overview

We present an abductive framework for diagnostic problem solving. Time-objects are
used as the representation formalism, and a number of primitive, general, evaluation
criteria into which fime has been integrated are defined.

To be considered, a potential solution to a problem must provide a plausible explana-
tion. To be selected, a solution must be the “best” of the plausible solutions. Therefore,
the questions that should concern developers of abductive diagnostic systems are “What
is the meaning of explanation plausibility?”, “How are plausible solutions formed?”, and
“How is the best solution selected?” These questions are the essence of abductive rea-
soning. In real-life diagnostic problems, the answers are not at all obvious. Explanation
plausibility is defined through necessary evaluation criteria (or constraints). A potential
solution that does not satisfy these minimum requirements, or hard evaluation con-
straints, is not plausible and should be rejected. Other soft evaluation constraints, speci-
fied over and above the minimum constraints, function to rank plausible solutions from
different perspectives. When no one plausible solution fares best under the different soft
evaluation perspectives, the problem is to determine the overall best plausible solution,
which may include “no diagnosis.”

The contributions of this article are twofold: (1) the integration of time within an
abductive diagnostic framework and (2) the definition of a number of primitive, general
evaluation criteria for temporal diagnostic solutions. The proposed primitive criteria,
each of which represents an intuitive yardstick for evaluating the space of potential
solutions, can be combined in a multitude of ways for obtaining appropriate definitions
for particular applications, and examples of this are given. However, the article cannot
propose any general definitions for plausible and best explanations because these will
be domain/application-specific, if not expert-specific.

IRetardation is, of course, an expectation that cannot be observed, only inferred from an observation made
at a particular time.
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In many real-life domains, as in the example domain overviewed earlier, time is
of major significance and should form an explicit and integral aspect of the knowledge
and reasoning of diagnostic problem solvers. It is hard to imagine a diagnostic system
with only an implicit notion of time performing well for the example domain. Although
much research work is reported in abductive diagnostic reasoning (e.g. Bylander et al.
1991; Console and Torasso 1990; Peng and Reggia 1990; Pople 1973; Poole 1989a, 1990;
etc.), relatively little is reported in temporal-abductive diagnosis (Console et al. 1992;
Console and Torasso 1991a; Friedrich and Lackinger 1991; Keravnou and Washbrook
1990; Long 1996). We single out the work by Console and Torasso (1991a) because
of its domain-independent exposition and compare and contrast it against our pro-
posal at many points in the ensuing discussion. A significant difference between the two
approaches is that while Console and Torasso’s work represents time explicitly (in the
form of temporal constraints on causal relations), it does not form an integral aspect of
the domain entities. In our approach, this integration is achieved by modeling the rele-
vant concepts (failures, faults, therapeutic actions, as well as normality) as time-objects.
A time-object (Keravnou 1998) is a dynamic entity comprising a property and an exis-
tence. Time-objects enable a uniform and natural amalgamation of temporal knowledge
with other essential types of knowledge such as structural and causal knowledge. This
article elaborates the modeling of diagnostic concepts as collections of time-objects to
achieve the key issue of the integration of time.

The formation of potential diagnostic solutions is discussed by overviewing context-
free and context-sensitive mechanisms (through primary and secondary triggers, respec-
tively). However, a major focus of this article is the evaluation of such solutions. In
agreement with other researchers (e.g., Thagard 1992; Peng and Reggia 1990; etc.), we
advocate the need for the formation and evaluation of potential solutions to be tightly
coupled processes. Solutions are formed incrementally, and at all times the partial solu-
tions must satisfy the minimum criteria that define explanation plausibility. Those solu-
tions which fare better from some perspective(s) are further investigated for extension
or refinement. We further advocate that primitive evaluation criteria should be repre-
sented separately and explicitly to permit their flexible and transparent combined use
at different stages of the overall reasoning.

1.3. Evaluation Criteria

Just as time has been largely ignored in diagnostic problem solving, evaluation
criteria have not been given the attention they deserve. Here we comment on some
other approaches to the incorporation of evaluation criteria, irrespective of whether
they explicitly address temporal aspects or not.

Thagard (1992) is quite emphatic about the need for a tight coupling between the
formation and evaluation of hypotheses in computational, abductive systems. More
specifically, he says that there are three possible models: (1) the two processes are
completely independent, and hypotheses are formed in a random fashion, a nonviable
option under limited resources; (2) the processes are weakly related, and only hypothe-
ses that explain at least something are formed; or (3) they are strongly related, and only
hypotheses that constitute likely possibilities are formed.

We refer to observations that necessarily need to be explained as hard findings (see
Section 4). These relate directly to the hard evaluation constraints. If the formation of
hypotheses is guided by the hard evaluation constraints, there is necessarily a strong
relation between the formation and evaluation of hypotheses, since at any stage only
plausible hypotheses are retained. Thagard also points out the inability (of some Al
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systems) to recognize those observations in need of explanation; this is a limitation
because not every observation demands explanation (observations that denote surpris-
ing, unusual, or significant events should be singled out). We agree with Thagard that
“further research is needed to identify how evaluation constraints can be used more
effectively to help limit the range of hypotheses that can be generated in order to lead
to ones more likely to be accepted” (Thagard 1992, p. 193). It is therefore important to
fully appreciate the nature of evaluation constraints and explanation plausibility before
specifying the formation process.

Thagard (1978, 1991b) suggests consilience, simplicity, and analogy as general crite-
ria for measuring the quality of explanatory hypotheses, putting the emphasis on prag-
matic notions. Consilience is concerned not only with how much a hypothesis explains
but also the variety of things it explains. Variety of types of observations is common in
realistic domains, e.g., in SDD, patient data can be clinical, biochemical, or histologic
as well as radiologic. A hypothesis is dynamically consilient if it becomes more credi-
ble over time, a notion very pertinent to the example domain. Simplicity is concerned
with the number of supporting assumptions, the well-known Occam’s razor [“What can
be done with fewer assumptions is done in vain with more” (Poole 1989a, quoting P.
Edwards)], and analogy advocates the reusability of successful explanation models in
analogous situations. The preceding general notions have been incorporated in a the-
ory of explanatory coherence (Thagard 1991a).

In early diagnostic systems, much attention was paid to the evaluation aspect in
an attempt to model the corresponding heuristics of expert diagnosticians (e.g., Miller
et al. 1982; Patil 1981; Pauker et al. 1976; Pople 1977, 1982; etc.). The limitation of these
approaches was the merging and embedding of the different criteria in so-called scoring
functions, hiding the intuitive meaning of each criterion and preventing their flexible
and transparent combined use in different contexts. On the positive side, though, such
scoring functions were actively used throughout the reasoning process, thus directly
influencing the formation of potential solutions. More recently, the trend in abductive
diagnosis has been to explore how much can be achieved with somewhat restrictive and
thus nonpragmatic criteria (Thagard 1991c). In such approaches, explanation plausibility
is nothing less than complete accounting (coverage) of all observations of abnormality
irrespective of their relative importance, say, for therapy. In real life it is rarely the
case that this evaluation constraint will be satisfied; more usually, a hypothesis explains
some observations but fails to explain others and may even be in conflict with them. Two
celebrated theories of abductive diagnosis, namely, Peng and Reggia’s parsimonious cov-
ering theory (Peng and Reggia 1990) and Poole’s logic-based theory (Poole 1988, 1989a,
1990, 1994; Poole et al. 1987), are based on this restricted notion of explanation plausi-
bility. In these theories, neither of which addresses time, there is indeed a strong cou-
pling between the formation and evaluation of hypotheses, since only hypotheses that
satisfy the preceding hard evaluation constraint are formed. The principle used to select
the best explanation from the plausible ones is that of simplicity. More specifically, Peng
and Reggia suggest parsimonious criteria based on relevancy (every disorder hypothe-
sis included in an explanation is causally related to some observation of abnormality),
irredundancy (none of the proper subsets of an explanation is itself an explanation),
or minimality (prefer the explanation with the minimum cardinality). Poole suggests
criteria based on minimality (prefer the explanation that makes the fewest, in terms of
set inclusion, assumptions), least presumption (prefer the explanation that makes the
fewest, in terms of what can be implied, assumptions), or minimal abnormality (prefer
the explanation that makes the fewest failure assumptions or makes the same abnormal-
ity assumptions but fewer normality assumptions). Van Harmelen and ten Teije (1994),
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who also define explanation plausibility as full coverage of observations, propose the use
of domain knowledge in selecting the best explanation on the ground that minimality
can still yield a number of best explanations. As already mentioned, we only propose
a number of primitive evaluation criteria. It is possible to identify such criteria at a
general level. However, it is not possible to give general definitions for plausible and
best explanation that would apply to different, real-life diagnostic domains. For illustra-
tion, we discuss how SDD uses some of the proposed primitive criteria in its notions of
plausible and best explanation.

In summary, we argue that time, for those diagnostic domains where it is of signifi-
cance, should be represented explicitly in an integrated way. We adopt the notion of the
time-object as the central representation primitive for achieving the proper integration
of time. The modeling of time enables a more accurate formation of potential solutions;
e.g., the presence of an abnormality may not be diagnostically significant as such, but
its specific pattern of appearance is. It also enables a more accurate evaluation of the
considered solutions; e.g., the expected picture of a disorder/failure is different depend-
ing on the stage of its evolution. Furthermore, we stress the significance of evaluation
criteria in abductive diagnostic reasoning, irrespective of the significance of time, since
the overall aim is to derive a solution that is the best explanation of the observations.
We advocate that primitive evaluation criteria should be represented separately and
explicitly to allow their transparent combined use in different reasoning contexts. Such
flexibility in the representation of primitive evaluation criteria enables the formulation
of different notions of explanation plausibility and best explanation.

The rest of this article is organized as follows: Section 2 gives a global view of
diagnostic reasoning from the temporal abductive perspective. Section 3 overviews the
adopted temporal ontology, presents models for failures, faults, normality, and thera-
peutic actions in terms of time-objects; and outlines mechanisms for the context-free
(via primary triggers) and context-sensitive (via secondary triggers) formation of poten-
tial solutions. Section 4 presents the proposed primitive evaluation criteria for temporal
solutions, Section 5 illustrates the application of some of these criteria in the SDD
system, and finally, Section 6 concludes the discussion.

2. TEMPORAL ABDUCTIVE DIAGNOSTIC REASONING

In this section we present a high-level view of temporal abductive diagnosis.

2.1. Application Context, Diagnostic Theory, and Case Histories

A diagnostic problem solver has a theory, its knowledge per se, that is bounded by
an application context. The theory is applied to the history of an actual case (human or
other) when solving diagnostic problems for that case.

The application context (AC) delineates the extent of the problem solver’s “exper-
tise” or competence and thus the scope of its diagnostic theory. The role of the applica-
tion context is in recognizing whether a particular problem is within, at the periphery,
or outside the problem solver’s expertise prior to attempting to solve the problem. It
therefore reflects what the problem solver is supposed to know and be able to do. The
specification of an application context may appear superfluous at the outset on the
ground that a system will never be consulted for a problem outside its scope. However,
in real-life situations, this is possible, especially for overlapping domains. For example,
it is not uncommon for a patient to be referred on by one specialist to another, either
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because he or she detects that the patient’s problem is peripheral or outside his or
her expertise or because he or she feels that a more specialized opinion is required.
In multi-problem-solver frameworks where problem solvers operate in a collaborative
rather than stand-alone basis, it is necessary to specify application contexts for the
individual problem solvers as the means for recognizing the relevance of problems to
solvers. For example, the early diagnostic system MDX (Chandrasekaran and Mittal
1983) exhibited a rudimentary collaborative architecture through a community of hier-
archically organized specialists. Each specialist had knowledge of what it knew to enable
it to decide whether a problem referred to it really belonged to its scope. In a sophis-
ticated form, an application context is a kind of metadiagnostic theory. However, an
application context can be expressed in a simple procedural way through a set of ques-
tions that are raised at the beginning of a session with the system for establishing
the relevance of the particular problem. This is the approach taken by the SDD sys-
tem, whose scope is singly occurring skeletal dysplasias and malformation syndromes.
A central question for establishing whether a problem belongs to the system’s scope
is whether the patient exhibits a generalized skeletal problem. Generally speaking, the
application context specifies the domain(s) of application (types of cases, e.g., human)
and the types of failure addressed (e.g., single or multiple failures and of what sort,
such as single skeletal dysplasias).

The diagnostic theory (DT) constitutes the knowledge of the diagnostic system. In
this article we are interested in temporal-abductive diagnostic theories, i.e., theories
with explicit notions of time whose purpose is to best explain (account for) abnormal
situations.

A central component of a theory is the set of temporal models for the distinct failures
covered by the system. The theory is complete if it includes a model for every known
failure covered by the application context. Depending on the breadth and rate of growth
of the application domain, it may be difficult to have a complete diagnostic theory. For
example, the domain of skeletal dysplasias and malformation syndromes includes 2000+
such disorders, and this number grows due to the continual discovery of new syndromes.
The diagnostic theory of the SDD system currently includes models for just 200 skeletal
dysplasias.

In addition, a diagnostic theory includes background knowledge. For the SDD sys-
tem, this is knowledge of the normal evolution of ossification processes as well as
anatomic and other fundamental medical knowledge. To draw a comparison with the
Theorist framework (Poole et al. 1987; Poole 1994), the failure models correspond
to conjectures (abnormality assumptions that are only considered if there is evidence
suggesting them), whereas background knowledge comprises both defaults, normality
assumptions that are assumed to hold unless there is evidence to the contrary (e.g., nor-
mal evolution of ossification processes), and facts (e.g., anatomic knowledge). Finally,
the background part of a diagnostic theory includes models of therapeutic (or other)
actions of relevance to the covered failures from a diagnostic perspective. We consider
the integration of therapeutic actions in a diagnostic setting another contribution of
our approach. The different parts of a diagnostic theory are explained in detail and
illustrated in Section 3.

A case history (CH) gives factual information on an actual case. It is a temporal (his-
torical) database of the case. For medical diagnostic theories, case histories are patient
records. Some of the information recorded is time-invariant (e.g., the sex and race of a
patient or the decomposition of a physical device into components and subcomponents),
but most of the information is temporal (e.g., dates and results of medical examinations,
past failures, therapeutic actions, etc.). A case history is continuously updated with new
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information. The derivation of trends or periodic occurrences is not possible without a
temporal account of the history of a case.

A diagnostic problem is triggered when observations suggest a malfunction. During
a particular diagnostic activity, the application context and diagnostic theory remain
static, but the relevant case history is dynamically updated through the incremental
acquisition of more observations, the derivation of (intermediary) conclusions on the
status of the patient, and the application of therapeutic actions. A competent diagnostic
system should be able to evolve on the basis of its own experience, thus gradually refin-
ing and extending its diagnostic theory (i.e., knowledge) and even application context.
This topic, however, is outside the scope of this article.

2.2. Temporal-Abductive Diagnosis

Diagnosis is a stepping stone to treatment, and the two processes may be inte-
grated/interleaved in some higher-level process whose aim is to improve the status of
a patient in a timely fashion (Friedrich 1993; Sadegh-Zadeh 1994). Time constitutes
an integral aspect of both diagnosis and treatment. For many diagnostic problems, it is
the pattern of changes that is significant in solving the problem rather than a snapshot
at a particular time. A case history is stored in a temporal database that records the
patient’s past, current status, and possibly predicted future. The database consists of a
collection of temporal assertions, associations between some property, and a span of
valid time.? Such temporal assertions are concrete time-objects (see Section 3.1). Time-
invariant properties for the case (e.g., properties describing a physical device’s structural
composition) are believed, at all times, to hold throughout the lifetime of the case;
hence everything can be treated as a temporal assertion. A temporal assertion that is
no longer believed simply can be deleted from the database.

Let CH, be a case history at time ¢ (recall that observations of misbehavior become
part of the case history), and let S, be a potentially abducible diagnostic solution for
the particular case at time ¢, i.e.,

DT UCH, — S,

where — stands for “suggests,” not logical implication, because the inference is abduc-
tive and thus plausible in nature. If S, = {(—f, ©)|f € failures under AC}, i.e., none of
the covered failures is believed to hold at time ¢, the case is assumed to be functioning
normally.® Otherwise, the case is malfunctioning, and S, is an explanation. If no failure
can be established to hold at time ¢, although there are observations of ongoing abnor-
mality, it is possible that a transient failure has caused a persistent fault (Friedrich and
Lackinger 1991). The adopted temporal ontology (see Section 3) enables the modeling
of a transient or persistent failure, both of which can cause a transient or persistent fault.
A competent diagnostic system ought to be able to explain an ongoing manifestation

2Strictly speaking, a temporal assertion is associated with both valid and belief time as used in Mylopoulos
et al. (1990). In database research, valid time is also referred to as historical time and belief time as transaction
time (Maiocchi and Pernici 1991). Hence an assertion that only has valid time is a historical assertion. However,
we feel that the term temporal assertion is more representative because in the scope of this work it is the valid
time that is of prime significance, while belief time is of secondary importance (once the integration of valid time
is achieved, belief time is conceptually easy to incorporate). Thus, in common with other proposals on temporal
diagnostic frameworks, we do not make use of belief time at this stage.

3A diagnostic system does not usually reason by sequentially attempting to refute each potential failure in
turn. Through a triggering mechanism (see Section 3.3), likely failures are activated (i.e., diagnostic hypotheses are
formed) that are subsequently explored for confirmation/refutation.
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by attributing it to a transient (and hence past) failure if such is the case. Like the case
history, a potential diagnostic solution S, at time ¢ consists of temporal assertions (i.e.,
time-objects), say, (f, v¢). Thus S, consists of assertions of past and/or ongoing failures
that explain observations of abnormality included in the case history. Each potentially
abducible diagnostic solution S; , at time ¢, i = 1, ..., n represents a hypothetical exten-
sion of the case history CH,. The diagnostic problem solving terminates successfully at
time ¢+ = G iff at that time one of the competing diagnostic solutions is “confirmed”
as the correct solution; i.e., it gets truly believed. Only a confirmed (believed) diagnos-
tic solution can become part of the case history. Assertions about actual therapeutic
actions performed on the case are entered directly into the case history.

Sadegh-Zadeh (1994) has proposed a framework for clinical reasoning called differ-
ential indication, where observation, diagnosis, and treatment are all seen as forms of
actions, and therefore, the various reasoning processes can be integrated naturally—in
Sadegh-Zadeh’s argument they form a single integral process whose goal is to improve
the patient situation. The following is an adaptation of part of Sadegh-Zadeh’s proposal,
for the purposes of this article: Let 74, and OA,, respectively, be therapeutic and obser-
vation actions suggested by the diagnostic-therapeutic theory DT and the case history
CH, at time ¢. The contents of T4, and OA, are temporal assertions of the same type as
those included in CH, and §; ,. Such assertions denote the instigation of actions at some
time after ¢. If a suggested action is actually instigated, it leaves OA4,,/TA,, and enters
(or its result, in the case of observation actions, enters) CH,, where ¢+ denotes a time
after ¢. Similarly, a suggested action is deleted by default when its specified initiation
point becomes a point in the past. Thus at time ¢ we have

DT UCH, — TA,
DT UCH, — OA,
DTUCH,—S,, DTUCH,—~S,, - DTUCH,—S,,

If there is just one potential diagnostic solution, which says that the case is functioning
properly, TA, = {} and presumably OA, = {}. Otherwise, at least one therapeutic or
observation action is proposed that may well be “wait for such a period of time to see
how things develop.” Thus the preceding inferencing is repeated at subsequent points
in time, using the updated case history, until the diagnostic conclusion is reached that
the case is functioning normally or that no further improvement is possible. It is still
possible that some observation and therapeutic actions are suggested.

According to the preceding sequence of inferences, the derivation of actions is done
independently of the derivation of potential diagnoses—“parallel” inferencing. Alterna-
tively, the following “sequential” inferencing (which takes place in the same quantum
of real time denoted by ¢) enables decisions on potential actions to be influenced by
beliefs on potential diagnoses:

DTUCH,— §;, DTUCH,— S, , DTUCH, — S, ,
DT UCH,U{S, , S8 1, ...,S, . — TA,
DTUCH,U{S, , S (.-.,S, .} = OA,
The set of all hypothesized diagnostic solutions {S; ,, S, ;,...,S, ,} is a “conflicting”

set. However, the actions are globally decided on the basis of all entertained diagnostic
solutions; this mode of inferencing is especially appropriate for observation actions that



96 COMPUTATIONAL INTELLIGENCE

aim to differentiate competing diagnostic solutions. The “parallel” inferencing is abduc-
tive in nature. The “sequential” inferencing also has a deductive aspect, the prediction
of the expectations of potential solutions.

In summary, a diagnostic process involves (Figure 1) detection of a malfunction, for-
mulation of a diagnostic problem, formation of potential diagnostic solutions, evaluation
of potential diagnostic solutions, and conclusion of the “best” diagnostic solution. The
detection of a malfunction is often done outside the diagnostic system. The formulation
of the diagnostic problem entails a ranking of the observations of abnormality by impor-
tance, to define the misbehavior that needs to be explained. This requires event-driven
reasoning, where suitable abstractions (intelligent interpretations) are drawn from the
observations. Once a diagnostic problem is formulated, potential solutions are formed
and evaluated. During this process, new possible solutions may be introduced. Ideally,
one of these solutions is eventually concluded, although often this is not possible (or
even necessary if all potential solutions lead to the same therapy). Instead, the most
likely solutions are presented. In addition, the system may present solutions that, though
less likely, could have serious outcomes and should be considered when deciding on a
therapeutic action.

Diagnostic reasoning does not proceed sequentially through the preceding steps.
First, new information about the case can be obtained throughout the diagnostic pro-
cess. Thus changes in the formulation of the problem can occur. Second, as already
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DIAGNOSTIC (REPAIR) SYSTEM

FIGURE 1. High-level view of a diagnostic system.
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discussed, the formation and evaluation of potential solutions are strongly coupled
processes—at any stage in the reasoning, only the most promising potential solutions, as
decided by the evaluation criteria used in the particular reasoning context, are actively
pursued.

3. DIAGNOSTIC CONCEPTS AS TIME-OBJECTS

3.1. Time Ontology

The principal primitives of the adopted time ontology are the time-axis and the
time-object that, respectively, provide a model of time (Keravnou 1999) and a model of
occurrences (Keravnou 1996a, 1996b, 1998). A time-axis o represents a period of valid
time from a given conceptual perspective. It is expressed discretely as a sequence of
time-values, Times(a) = {t;, t,, . . . , t,}, relative to some origin. Time-axes are of two
types, atomic axes and spanning axes. An atomic axis has a single granularity (time-unit)
that defines the distance between successive pairs of time-values of the axis. Its time-
values are expressed as integers. A spanning axis spans a chain of other time-axes. It
has a hybrid granularity formed from the granularities of its components, and its time-
values, also inherited from its components, are tuples (Keravnou 1999). An application
can involve a single atomic axis and a single granularity or a collection of time-axes and
multiple granularities where the same period of time can be modeled from different
conceptual perspectives. In the examples in Section 1, relevant time-axes could be fetal-
period, infancy, childhood, puberty, and maturity, the latter four collectively forming a
spanning axis of lifetime. Similarly, childhood could be a spanning axis, decomposed
into early, middle, and late childhood. The others could be atomic axes, where the
granularity for fetal-period and infancy could be months, whereas for maturity, years,
etc. If the origin for all these axes is birth, the time-values for fetal-period would be
{-10, -9, ..., 0}, a negative value denoting a time before the origin, which is denoted
by 0. These are general, or abstract, time-axes whose origin is a generic time-point.
Such time-axes can be instantiated for specific cases by binding their abstract origin to
an actual time point, thus obtaining concrete time-axes. The distinction between abstract
and concrete, which applies to time-objects as well, is important; a diagnostic theory is
expressed at an abstract level; a case history, at a concrete level.

The notion of a time-axis is an abstraction mechanism for a more efficient and
conceptual organization of time-objects. However, the ultimate objective is to be able
to express different types of occurrences, and hence the central notion is the time-object.
For brevity, in the following discussion we assume that there is a single abstract atomic
axis used in the definition of the diagnostic theory. This is instantiated to provide the
concrete time-axis for the definition of the particular case history.

A time-object is a dynamic entity that has time as an integral aspect. It is an asso-
ciation between a property and an existence. The manifestations of SEDC and morquio
given in Section 1.1 are examples of time-objects, e.g., (pear-shaped vertebral-bodies,
under the age of 15 years), (coxa-vara, from birth), etc. The notion of a time-object
enables the definition of different types of occurrences, such as simple (atomic) occur-
rences or compound occurrences (such as trend occurrences, periodic occurrences, or
any other pattern of simpler occurrences). To be able to express such occurrences, the
ontology of time-objects includes three types of relations between time-objects: termpo-
ral relations that are adapted and extended from Allen’s (1984) set, structural relations,
that enable the composition and decomposition of time-objects, and causal relations.
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Time-objects, like time-axes, are either abstract or concrete. Disorder models consist
of abstract time-objects, whereas case histories consist of concrete time-objects. The
existence of abstract/concrete time-objects is given with respect to abstract/concrete
time-axes. Given the multiplicity of time-axes, formally, a time-object 7 is defined as a
pair {w,, &;) where m_ is the property of T and ¢, is its existence function. The time-axis
that provides the most appropriate conceptual context for expressing the existence of T
is referred to as the main time-axis for T, and the expression of 1’s existence with respect
to its main time-axis is referred to as its base existence. The existence function &, maps
the base existence of 7 to other conceptual contexts (time-axes). A time-object has a
valid existence on some time-axis iff the granularity of the time-axis is meaningful to the
property of the time-object (see below) and the span of time modeled by the time-axis
covers (possibly partially) the base existence of the time-object. If time-object T does
not have a valid existence in the context of time-axis «, &.(a) = L (the time-object is
undefined with respect to the particular temporal context). If time-object T has a valid
existence on some time-axis a, its existence on «, _(a),* is given as

ST(OL) = <ts7 tf, g)
where 1, t; € Times(a), t;, < t;, and
{ € {closed, open, open-from-left, open-from-right, moving }

Time-values £, and #;, respectively, give the (earliest) start and (latest) finish of the time-
object on a. The third element of the existence expression, ¢, gives the status of T on a.
If the status is closed , the existence of the time-object, and hence its duration, is fixed.
Otherwise, the status denotes openness (i.e., vagueness) on the one or both ends of the
existence. In the case of openness at the start, ¢, gives the earliest possible start, whereas
function left-freedom_(a) gives the latest possible start. Similarly, in the case of openness
at the finish, 7, gives the latest possible finish, whereas function right-freedom () gives
the earliest possible finish. The existence of an open time-object, on a given time-axis,
is therefore defined through an initial period of uncertainty, an in-between period of
certainty, and a final period of uncertainty. If the earliest finish of an open time-object,
with respect to some time-axis, precedes or coincides with its latest start, there is no
period of certainty. Thus the duration of a nonclosed existence of a time-object can
only be shortened.

Hence a time-object can exist as a point-object on some time-axis but as an inferval-
object on another time-axis. In the former case, the temporal extent of the time-object
is less than the time-unit of the particular time-axis. If a time-object is a point-object
under some time-axis, it is treated as an indivisible (nondecomposable) entity under
that time-axis. A special moving time-object is now, which exists as a point-object on
any relevant concrete time-axis and functions to partition (concrete) time-objects into
past, future, or ongoing.

“The existence function & is in fact a two-parameter function, (1, a); . simply denotes the partial param-
eterization of the function with respect to the argument time-object T which gives a single parameter function.
Similarly, 7, denotes the (full) parameterization, with respect to the argument time-object T, of the single parameter
function (7).
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The structural relations between time-objects are isa-component-of and its
inverse contains  and variant-component and its inverse variant-contains ;
the latter two express conditional containment of optional components:

Axiom 1. contains  (7;, 7;) < variant-contains (74> ), €) A conds-hold(c)

A variant component can only be assumed in some case if the specified conditions
are satisfied. This is expressed in predicate conds-hold. For example, aspects of the
ossification processes for carpals and radial and tarsal epiphyses differ between boys
and girls. These distinctions can be conveniently modeled through variant components
of the particular ossification processes. A compound time-object has a valid existence
under any time-axis in which at least one of its components has a valid existence, and
a component time-object exists within the one that contains it. Temporal views of a
compound time-object, from the perspective of specific temporal contexts, thus can
be defined. Trends and periodic occurrences are modeled as compound time-objects
(Keravnou 1997).

Causality is a central relationship in diagnostic problem solving. The ontology of
time-objects includes relations causes , causality-link and cause-spec  which
are defined at the level of abstract time-objects, concrete time-objects, and abstract
properties, respectively (Keravnou 1998). Relation causes (7;, 7;, ¢s, cf), where 7; and
T; are abstract time-objects, ¢s is a set of temporal and other constraints, and cf is
a certainty factor, is used in the following Axiom for deriving a causality-link
between a pair of concrete instances of 7; and 7;. A general constraint that always
needs to be satisfied is that a potential effect cannot precede its potential cause:

Axiom 2. causality-link (7, 7j, cf ) <= causes(;, 7}, ¢, cf ) A conds-hold(cs) A

—starts-before (15, 7;)

Predicate starts-before (), 7;) expresses that 7; starts before 7;. Even if all the
specified conditions are satisfied, by some case, still it may not be definite that the
causality-link actually exists owing to knowledge incompleteness. This is modeled
by the certainty factor.

Properties, which constitute the other half of time-objects, are atomic or compound
(negations, disjunctions, or conjunctions), passive or active, and some are time-invariant.
A typical format for atomic properties is ({subject) [, (attribute 1), (value 1), ...,
(attribute n), (value n)]). Examples of properties are “sex male,” “sore throat,” “severe
coughing,” “removal of tonsils,” etc. Properties have explicit temporal attributes. A
property is associated with relevant granularities; e.g., “headache present” is associated
with hours and days but probably not months or years. A property either has an infinite
or a finite persistence. In the latter case, the following are additionally specified: whether
the property can recur (multiple instantiations of the given property in the same case
are possible) and maximum and minimum durations under any of the relevant granular-
ities, independently of any context in which they may be instantiated, where the default
is to persist indefinitely. A default margin for the initiation of some instantiation of the
property, under a relevant time-axis (earliest-init, latest-init), is also included in the tem-
poral attributes of properties. If not specified, this is assumed to be the entire extent of
the particular time-axis. For example, “SEDC present” is an infinitely persistent prop-
erty whose earliest-init is birth. On the other hand, “flu present” is a finitely persistent,
recurring property, and “chicken pox present” is a finitely persistent but normally not
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a recurring property. In addition, the ontology adopts the semantic attributes of prop-
erties specified by Shoham (1987), e.g., downward hereditary, upward hereditary, solid,
gestalt, etc.

Relation cause-spec between properties has six arguments, where the first two
are properties, the third a granularity, the fourth and fifth sets of relative (7Rel) and
absolute (7Abs) temporal constraints, respectively, and the last one a certainty factor.
This relation also enables the derivation of a causality-link between a pair of
time-objects:

Axiom 3. causality-link (7,7, cf ) <= cause-spec (p;, p;, v, TRel, TADs, cf)
Am(T;) = p; A (1)) = p; Ar-satisfied(t;, T;, u, TRel)
na-satisfied(t;, 7;, ., TAbs) A —starts-before (T, 7))

Predicates r-satisfied and a-satisfied express the satisfiability of the relative and
absolute temporal constraints, respectively. Other property relations include exclusion,
necessitation, etc.

The implementation of the time ontology in terms of meta, abstract, and concrete
layers is discussed in Keravnou (1999). This includes a declarative assertion language
combining object-oriented, functional, and logical features for the expression of the
various Axioms.

3.2. Modeling Failures, Faults, Normality, and Actions as Time-Objects

In this section we explain how abductive diagnostic theories (failure models and
background knowledge of normality) and case histories can be uniformly represented in
terms of time-objects (Keravnou 1995a, 1996d). A specific diagnostic activity operates
within a (possibly moving) window of real time that at any instant of time gives the
past and future period of interest. This time window forms the concrete time-axis. The
relevant history of a case is that which is covered by the concrete time-axis.

Failure Model. An abductive diagnostic theory primarily contains failure models for
all the known failures covered by the application context. A necessary condition for the
instantiation of a failure model is that the model’s abstract time-axis can be mapped
onto the concrete time-axis for the case.

Typically, a failure is a nonobservable malfunction whose presence in some situa-
tion is detected through its observable manifestations, its associated faults. We classify
failures and faults as follows from the temporal perspective: (1) infinitely persistent,
either with a fixed or a variable initiation margin (e.g., SEDC or morquio), (2) finitely
persistent but not recurring, again either with a fixed or a variable initiation margin
(e.g., chicken pox), and (3) finitely persistent that can recur (here the initiation margin
is variable), e.g., flu. The temporal extent of a finite persistence is either indefinite or
bounded (through minimum and maximum durations). Transiency is associated with
finite, and usually short, duration. Thus, at any point in real time, actual failures/faults
are described as either persistent (ongoing) or transient (in the past). The classification
of failures/faults just given is fully covered by the semantics of properties in the adopted
time ontology (see above).

A typical model of some failure is an (acyclic) causal structure comprising a num-
ber of causal paths emanating from the node denoting the failure and terminating at
nodes denoting (usually observable) faults. Intermediate nodes on such paths denote
internal (usually unobservable) causal states. When no internal states are included, the
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causal structure is reduced to a simple associational structure between the failure and
its faults. Figure 2 illustrates the representation of a failure model as a causal structure.
Such a causal structure is naturally expressed as a collection of abstract time-objects—
each node corresponds to a time-object and each arc to the relevant instance of relation
causes . If the failure ® has a fixed initiation margin, its existence is expressed relative
to the origin of the time-axis; otherwise, the failure is assumed to occur at any time,
and only a (default) margin for its duration, if any, is known. The existence of an inter-
nal causal state (CS;, CS,, ..., CSy) or a fault (O, O,, ..., Os) is expressed relative to
either the origin of the time-axis or the existence of the failure ®. The temporal knowl-
edge regarding the existences of the nodes in a failure model may well be incomplete,
and hence, where appropriate, default durations are used; in the worst case, every node
has an indefinite persistence. In addition, the existences of the various time-objects may
be constrained in a relative way by pairwise temporal relations between them.

Compound causal antecedents (at different levels of abstraction) can be expressed
simply in the time-object ontology. Causal state CSg is an example of such a compound
causal antecedent consisting of causal states CSg and CS;. The existence of Os depends
on the existence of CSg, and hence, by implication, it depends on the existences of both
CSs and CS;. No restrictions are imposed on the relative existences of CSy and CS,.
Os materializes in some situation if its compound antecedent CSg materializes (and
all the specified conditions, if any, are satisfied); CSg’s materialization depends on the
materialization of its components.

legend:

-

(carliest) (latest)

failure (normally unobservable)

start finish
O internal causal state (normally unobservable)

(earliest) (latest)

start finish

<:> fault (normally observable)
(earliest) (latest)
start finish
- relation causes

FIGURE 2. Failure model as a causal structure of time-objects.
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Similarly, a node can have alternative, independent, causal antecedents, e.g., causal
state CSy that has causal antecedents CS, and CSs. The interpretation is that the tempo-
ral extent of CS, is the same under any of the following situations: only CS, materializes,
only CSs materializes, and both CS, and CSs materialize. If this is not so, the depicted
part of the model is replaced with three paths whose respective antecedents correspond
to the preceeding three situations, and their consequents are three distinct time-objects
sharing the same property but having different extents.

For illustration purposes, the descriptions of the skeletal dysplasia SEDC and the
dysmorphic syndrome morquio given in Section 1 are represented as causal structures
of time-objects (Figures 3 and 4). Each node depicts a time-object; the text inside the
node gives the property of the time-object (a discussion on the format and full semantics
of properties for this domain are outside the scope of this article), and the text out-
side gives its (base) existence [(earliest) start and (latest) finish]. These existences are
expressed with respect to the single abstract time-axis (not depicted in the figures), life-
time, say, whose granularity is years and origin birth. Some of these existences are uncer-
tain. For example, the exact termination of properties “vertebral-bodies pear-shaped”
and “tri-radiate-cartilage wide” in the SEDC model cannot be specified. Similarly, the
exact meeting point of the two components of the trend time-object “femoral-capital-
epiphyses progressive-resorption” in the morquio model is not known, but a margin for
it can be specified (ages 8 to 15 years).

The majority of nodes in these models are considered as observable. This is so
because the conditions described by their properties can be observed through radio-
graphs. The two primitive trends in SEDC are represented as metaqualifications, or
progression patterns, (“worsening”) over observable properties. The trend per se is not
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FIGURE 3. Modeling the skeletal dysplasia SEDC as a causal structure of time-objects.
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FIGURE 4. Modeling the dysmorphic syndrome morquio as a causal structure of time-objects.

observable and can only be inferred (or denied) through a temporal sequence of obser-
vations of the given property. Morquio’s (compound) trend is also expressed through a
metaqualification, “progressive-resorption,” over property “femoral-capital-epiphyses.”
The given node is considered unobservable because its use is in the context of the given
progression; femoral-capital-epiphyses are not observed for the sake of some snapshot
recording but for the purpose of establishing the trend.

The solid arcs are instances of relation causes . In the depicted instances, there
are no conditions, and the certainty factors are expressed in a qualitative fashion as nc
(necessarily causes), uc (usually causes), and mc (may cause), given as labels on the
arcs. Thus each arc can be expressed as causes (1;, 7;, {}, nc/uc/mc). Usually only
a small proportion of the causal arcs define necessary causation; the majority of them
define conditional, uncertain causation. Due to knowledge incompleteness, the set of
conditions associated with a causal arc is often incomplete or unknown, and hence
there is inherent uncertainty. Based on the degrees of uncertainty, the effects of some
cause (and hence the faults of some failure) can be classified into necessary, common,
occasional, etc. Such a classification can be used in the evaluation of potential diagnostic
solutions (see Section 4).

Since most of the causal chains are of unit length, what we really have here are asso-
ciational relations between the disorders (failures) and their manifestations (faults); no
intermediate, internal causal states are depicted. However, in the SEDC model, some
terminal nodes are in fact (unobservable) internal states. These represent delays in
particular ossification processes. The existences of these time-objects are not given in
absolute terms but implicitly through the metaqualification “delayed-process,” which
encompasses a multitude of actual possibilities. Since the significant information is the
presence and not the specific form of delay, there is no need to be any more detailed.
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As with a trend, a delay per se is not observable but inferable. On the basis of the
background knowledge giving the normal behavior of ossification processes and the case
observations at a lower level (such as information on the status of bone growth observed
directly from radiographs), it can be inferred whether ossification is progressing nor-
mally or if (part of) it is exhibiting a delay or prematurity. In SDD this inferencing
is sometimes done by the user of the system, who can then enter directly the abstract
information that there is delay/prematurity in an ossification process.

Figure 5 illustrates a very small portion of the representation of the normal ossifica-
tion process of the cervical spine. The process is represented as an unobservable com-
pound time-object whose components are also unobservable compound time-objects.
The components represent subprocesses that are gradually refined into observable
events, such as the appearance of primary and secondary centers of ossification, which
signify the start and/or completion of (sub)processes. Such events are point-objects at
the relevant granularities, and although their occurrences cannot be specified exactly,
they can be bounded. The description of this ossification process refers to three dif-
ferent granularities, weeks, months, and years, that implicitly refer to the conceptual
temporal contexts (time-axes), fetal-period, infancy, childhood, puberty, and maturity.
Informally, the following Axioms can operate on such representations of normal pro-
cesses for deducing delays: If an event marking the start of a process has happened
after the expected latest start, there is a delay; if an event marking the completion
of a process has happened after the expected latest finish, there is a delay; and (for
compound processes) if a component of the process is delayed, (part of) the process
is delayed. Similar Axioms can be used for deducing prematurity. It is possible that an
actual ossification process exhibits both a delay and a prematurity.

Figure 5 also illustrates a generic causal relation that captures the default persis-
tence, i.e., the normal expectation, regarding the ossification status of any skeletal part:
Once a part of the skeleton is ossified, it is expected to continue to be ossified for
life. The causal relation is generic because both the skeletal part and the time-values
involved are expressed through variables. Such (normality) causal relations are part of
the background knowledge of the diagnostic theory. In addition, the theory can include
generic (abnormality) cause-spec , at the level of properties, independently of the
failure models.

It is a strength of our representation that failure models and normality can be
uniformly represented. [Other approaches that integrate normality and failures are,
for example, Console and Torasso (1990a) and Poole (1989b)]. At the implementation
level, the causal and decomposition structures (comprised of time-objects) such as those
illustrated in Figures 3 through 5 are translated into symbolic form. The symbolic rep-
resentation of the SEDC model is given in Figure 6. The language used for expressing
diagnostic theories and case histories is founded on the ontology of time-objects (prop-
erties, existences, openness, granularities, causal, temporal and decomposition relations,
etc.) augmented with diagnostic concepts (failures/disorders, faults, observability, nor-
mality, etc.).

The overall causal network representing the diagnostic theory is partitioned into
distinct causal models for the various failures. The partitioning is necessary in order
to allow multiple, dynamic instantiations of the same failure, thus capturing recurring
failures. There is only one model per failure; however, the same failure can appear as
an ordinary causal state node in another failure’s model. A primary cause® does not
have any causal antecedents; primary causes are those failures which do not figure in

5Primary failures can be associated with relative, a priori, likelihoods of occurrence.
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FIGURE 5. Modeling the normal behavior of an ossification process in terms of time-objects.

some other failure’s model (and hence as intermediate nodes) but only in their own
model. A primary failure can be observable, e.g., alcoholism, a primary failure causing
cirrhosis (Console and Torasso 1991a). Different failure models are implicitly related
through node sharing or explicitly related through secondary triggers (see below). We
assume that a subset of failures defines diagnoses.

In Console and Torasso (1991a), the causal network is a fully connected structure
that does not permit multiple instantiations of the same failure, and hence periodic

105
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(disorder-model SEDC
(main-exist lifetime (birth death closed))
(unobservable)
(usually-causes

((ossification-of pubic-bones)
(meta-qualification delayed-process) )

({limbs short)

(main-exist lifetime (birth death closed))
(observable)
(necessarily-causes
((stature short)
(main-exist lifetime (birth death closed))
(observable))))

({(vertebral-bodies variable-size)

(main-exist lifetime (birth l-year closed))
(observable))

( (knee-epiphyses absent-ossification)
(main-exist lifetime (birth death closed))
(observable))

((ossification-of epiphyses)

(meta-qualification delayed-process) )

((triradiate-cartilage wide)

(main-exist lifetime (birth ll-years open-from-right))
(observable))

((coxa-vara bilateral severe)

(main-exist lifetime (birth death closed))
(observable)
(trend worsening) ) )

(may-cause

((stillbirth) (observable) (necessarily-causes (death)))

((ossification-of cervical-spine)
(meta-qualification delayed-process) )

((scoliosis)

(main-exist lifetime (birth death closed))
(observable)
(trend worsening) )

( (vertebral-bodies pear-shaped)

(main-exist lifetime (birth 15-years open-from-right))
(observable))

((platyspondyly mild)

(main-exist lifetime (birth death closed))
(observable))))

FIGURE 6. Symbolic representation of SEDC model.

failures cannot be dealt with. In addition, and of relevance to the preceding, “... one
cannot deal with changing data and thus periodic findings; moreover, one cannot take
into account the trend of the values of a parameter, which is usually a very important
piece of information for diagnosticians” (Console and Torasso 1991a, p. 300). Temporal
data abstraction is therefore not supported, nor are compound occurrences. Further-
more, the integration of models of correct behavior is not discussed in that work, the
emphasis being on temporal constraint satisfaction over causal networks, whereas our
emphasis is on integrating time within the objects in the diagnostic system. The tem-
poral knowledge used specifies minimum and maximum delays for each causal arc, i.e.,
the minimum and maximum delay between the initiation of the cause and the initiation
of its effect; the proposers argue that, in medical domains, only such temporal knowl-
edge is usually available, and thus the temporal extents of nodes need to be dynamically
derived, by reasoning backwards from the temporal extents of observations. However,
on the basis of such delay information, the initiation margins for the various nodes, rel-
ative to the possibly unbound initiation of some initial node, can be predetermined, and
thus in the worst case, only the termination margins are indefinite. Our time-ontology
allows for such openness in the temporal extents of time-objects, as already illustrated.
However, margins for the duration of nodes in some failure model can be available as
the example domain has demonstrated, and if they are not available, the default mar-
gins for the durations of the relevant properties can be used; hence margins for the
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(case-history
(patient-name . .. )
(date-of-birth ... )
(sex ... )
(race ... )
(consanguinity ... )
(radiological-findings
((carpal-bones small)
(main-exist case-lifetime (10-years 1l0-years closed)))
( (femoral-capital-epiphyses abnormal)
(main-exist case-lifetime (2-years 2-years closed)))
( (femoral-capital-epiphyses flat irregular)
(main-exist case-lifetime (7-years 7-years closed)))
((vertebral-end-plates irregular)
(main-exist case-lifetime (7-years 7-years closed)))))

FIGURE 7. Symbolic representation of a case history.

terminations of nodes also can be predetermined. Bounding the temporal extents of
nodes in a causal model reduces the computational complexity of a temporal constraint
propagator; furthermore, it avoids the need to impose unrealistic temporal assumptions
for reducing the computational overheads, such as a cause cannot “outlive” its effect,
or there cannot be a gap between a cause and its effect, etc.

Case History. Next we explain how a case history can be represented in terms of
time-objects. As discussed earlier, a case’s temporal database consists of temporal asser-
tions, associations between properties, and spans of valid time. The relevant history of a
case consists those assertions whose valid time is covered by the concrete time-axis cor-
responding to the time window of the diagnostic activity—in this way, “irrelevant” asser-
tions, e.g., assertions in the remote past of the case, are screened out.® Each selected
temporal assertion is a (concrete) time-object. Thus the (relevant) case history is a col-
lection of time-objects. We assume that the number of time-objects in a case history is
kept to the minimum possible by performing appropriate merges as well as other forms
of temporal data abstraction on the raw time-objects (Keravnou 1996b). Furthermore,
potential causality dependencies between these time-objects are investigated through
the application of Axiom 3, and where a causality-link is established to hold, it
is appropriately instantiated. Some of the time-objects comprising the case history are
contextual; i.e., they do not need any explanation. These usually assert past failures or
past or ongoing therapeutic actions. Figure 7 gives the symbolic representation of the
case history mentioned in the introduction. In this case, all the time-objects comprising
the diagnostic problem are point-objects at the granularity of years, the time-unit of the
particular concrete time-axis (named case-lifetime).

Therapeutic Actions. A pure diagnostic system is not required to plan and monitor
the execution of therapeutic actions in parallel to trying to reach a diagnostic solution.
Still, such a system should have an understanding of the notion of a therapeutic action
or, more generally, the notion of an action. If the case history under consideration men-
tions past or ongoing therapeutic actions, the system should understand their effects.
For example, the model of a failure may be different in the context of such actions
[associated faults are nullified or accentuated (prolonged)].

Knowledge about therapeutic actions is part of the background component of the
diagnostic theory. Each generic therapeutic action is represented in terms of the action

For some applications dealing with monitoring rather than diagnosis, the concrete time-axis (time window)
is a moving one in the sense that the position of its origin is continuously moving in a forward direction, and thus
assertions whose valid time is no longer covered by the time-axis are “forgotten” (Dojat and Sayettat 1994).
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per se, its preconditions and effects. All these are time-objects; the existences of the
preconditions/effects are given relative to the existence (i.e., initiation) of the action
(Keravnou 1996d). At a generic level, the action is related with its effects through
instances of relation causes . Knowledge of preconditions of actions is relevant to the
task of a therapy planner but not to the task of a diagnostic system that only needs
to be able to understand potential interactions between (past or ongoing) actions and
conjectured failures. Thus a diagnostic system only needs to know the potential effects
of such actions.

For every action in a case history, Axiom 2 is applied to each of the causes rela-
tions between the action and its effects in order to decide which causality-links
actually hold; the effects corresponding to these links are also recorded in the case his-
tory. Entering such time-objects (effects of therapeutic actions) may result in revoking
or clipping the persistence of predicted observations in the case history, if any.

3.3. Diagnostic Solutions: Instantiating Failure Models

At any time ¢, there are a number of potential diagnostic solutions, or hypothetical
worlds. (For the rest of the article, the terms potential diagnostic solution and hypotheti-
cal world are used interchangeably.) A hypothetical world consists of instantiated failure
models; hence it can be abstracted to the time-objects comprising the starting states of
the included failure models, the failures per se. This subsection discusses (1) mech-
anisms for the context-free (through primary triggers) and context-sensitive (through
secondary triggers) formation and extension of hypothetical worlds and (2) the dynamic
integration of the components of a hypothetical world and their tailoring against rele-
vant actions recorded in the case history.

Temporal-Abductive Triggering Mechanisms. There are three ways to trigger
(abduce) a failure model: (1) through primary triggers, (2) through secondary triggers,
and (3) through another failure’s instantiation that includes the given failure as a causal
state node.

A failure is associated with a number of primary triggers. In some theories, every
observable node in a causal model potentially could act as a primary trigger. How-
ever, for better focusing and higher compatibility with human diagnostician practices,
the role of a primary trigger is reserved to a small subset of these nodes. A primary
trigger is some cheap, easily obtainable information (e.g., striking abnormality, observ-
able primary cause, contextual information, etc.) that directs attention to the particular
failure. The primary triggers for SEDC and morquio are illustrated in Figures 8 and 9,
respectively, as (abstract) time-objects. Comparing the primary triggers with the corre-
sponding manifestations (faults) in the SEDC and morquio models (see Figures 3 and
4), it can be seen that the primary triggers are less restrictive with respect to both their
properties and their existences. The existence of most of the depicted triggers is in fact
the default “at any time” because most of the actual triggers are expected to be point-
objects. The primary trigger “platyspondyly at any time” that is associated with both
disorders is considerably less restrictive than the corresponding manifestations that are
“mild platyspondyly from birth onward” for SEDC and “platyspondyly throughout from
the age of 1 year onward” for morquio. Furthermore, for two of the SEDC triggers,
the significant information, regarding their existence, is the start point. Thus the given
triggers read “short stature from birth until any time” and “skeletal abnormality from
birth until any time.” Finally, the progression “worsening” associated with property
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FIGURE 8. Primary triggers for SEDC.

“bilateral, severe, coxa-vara” in the SEDC model is not included in the correspond-
ing trigger. Similarly, two of the morquio triggers relate to the disorder’s expectation
regarding the progressive resorption of femoral-capital epiphyses. Once again, the trig-
gers are considerably less restrictive. For example, the temporal constraints specifying
the particular form of resorption are missing. Thus primary triggers, by virtue of being
less restrictive than corresponding faults in a failure model, simply provide heuristic
guidance in the generation of diagnostic hypotheses, and they are by no means infal-
lible; after all, the same trigger can be associated with many failures. For example,
the hypothesis of morquio will be triggered on the basis of “femoral-capital epiphyses
absent at-birth” despite the fact that this hypothesis is in conflict with this observation.
It does not matter if unlikely hypotheses are triggered, provided that the subsequent
evaluation will result in their rejection. However, it does matter if likely hypotheses
are not triggered, and hence there must be alternative, simultaneously applied ways of
forming hypotheses. Primary triggers represent a context-free mechanism for the forma-
tion of hypotheses, since the formation is done independently of any other hypothesis.

platyspondyly

femoral-capital
epiphyses

absent-

ossificatiol

L ,,,,,,,,,,,,,, ) legend
progressive ~ triggersinaprimary fashion (context-free
resorption formation of diagnostic hypotheses)

FIGURE 9. Primary triggers for morquio.
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The other mechanisms to be discussed are context-sensitive. The notion of a primary
trigger, as a prime mechanism for the formation of hypotheses, has been used in early
abductive diagnostic systems (Thagard 1992). The contribution of our approach is in
having temporal primary triggers.

Formally, a primary trigger for some failure ® is expressed as the triple (t, conds, f7),
where T is an abstract time-object (possibly compound), conds is a list of conditions,
and f; is an instantiation function. For example, the symbolic representation of the
“platyspondyly” trigger for SEDC is

(primary-trigger
((property platyspondyly) (exist lifetime *any-time*))()
((disorder SEDC) (exist lifetime (birth death closed)))

In this trigger, no conditions are specified. The semantics are that if 7’s abstract existence
can be mapped onto the concrete time-axis used in the case history, the case history
accounts for concrete-t (predicate accounts-for is defined in Section 3.4), and all the
specified conditions are satisfied (by the case history), the instantiation function f; is
applied to the abstract model of ®, and concrete-T, to return the concrete instantiation
of ® i.e., to determine the particular existence of the failure on the concrete time-axis.
Thus, if the abstract time-axis used in the definition of the failure model cannot be
mapped onto the concrete time-axis, the particular failure cannot be triggered (none
of its primary triggers can be activated), and hence it cannot be instantiated under
any potential solution for the given diagnostic problem; in short, the period of time of
relevance to the given failure is outside the temporal scope of the particular diagnostic
activity. Consider, for example, a case for the SDD system where the first observations
of abnormality are positioned around the age of 7 years. It is therefore reasonable for
the concrete time-axis to start at the age of 5 years; any information preceding this
time-point is considered irrelevant. As a result, the hypothesis of SEDC or morquio
cannot be formed for this case because the abstract time-axes for the models are not
fully mappable onto the concrete time-axis, and as a result, the initiations of these
disorders cannot be positioned on the concrete time-axis.

Processing a primary trigger usually entails reasoning backwards in time; the trigger
is (loosely) related to a potential effect of the failure, and based on the trigger’s observed
existence, the existence of (a particular instantiation of) the failure is hypothesized.
Multiple primary trigger activations for the same failure model are possible. Some of
these could refer to the same trigger, thus capturing recurring events.

Secondary triggers interrelate failure models. They are of two types, complementary
and opposing. A complementary secondary trigger suggests the instantiation of another
failure in conjunction with some instantiated failure. An opposing secondary trigger sug-
gests the replacement of some failure with another failure. The format of a secondary
trigger for some failure ® is (t, conds, f;, ®'), where 7 is an abstract time-object, conds is
a list of conditions, f; is an instantiation function, and ¢’ is a complementary/alternative
failure. Its semantics is similar to that of a primary trigger. Figure 10 illustrates a
secondary, opposing trigger from morquio to SEDC that expresses the fact that the
two disorders may be distinguished on the grounds of their presentation time; SEDC
presents from birth, while morquio presents from the age of 1 year. Thus, if morquio is
hypothesized for some case and new evidence points to the presence of some skeletal
abnormality from birth, the competing hypothesis of SEDC is also formed. In SDD,
secondary triggers are rarely used in the formation of hypotheses for the simple reason
that primary triggers rarely miss a likely hypothesis. However, secondary triggers play a
very important role in this system when differentiating competing hypotheses (Keravnou
et al. 1994).



ABDUCTIVE DI1AGNOSIS USING TIME-OBIJECTS 111

“birth ‘ “birth "1t year death

:O:D triggers in a secondary fashion

(context-sensitive formation of diagnostic hypotheses)
only primary causes can be related in this fashion

FIGURE 10. Secondary opposing trigger from morquio to SEDC.

Integrating and Tailoring a Hypothetical World. A hypothetical world consists of a
number of failure model instantiations. It is strongly integrated, and hence the diagnostic
solution it represents is coherent, if it does not consist of disconnected parts. Poten-
tial interactions between nodes of different failure (model) instantiations, in the same
hypothetical world, can be determined dynamically as follows’: First, Axiom 3 is applied
with respect to pairs of relevant nodes (of different failure instantiations) to see if any
causality-links can be established. Second, nodes sharing the same property are
investigated. If the existences of such nodes are not disjoint, the possibility of merging
them into a single shared node is explored. If the existences are sufficiently disjoint to
represent distinct occurrences of the given property, a loose connection may be created
by collating all the distinct occurrences into a compound time-object representing the
recurrence of the given property [this collating may even reveal a periodic occurrence
by detecting some regularity—a recurrence pattern (Keravnou 1997)].

The investigation of the existence of links between apparently unrelated compo-
nents of a hypothetical world is done with the objective of obtaining a more coherent
potential solution. In the same manner, potential interactions, this time both additive
and subtractive, between (therapeutic) action effects recorded in the case history and
components of a hypothetical world are investigated. A potential solution is there-
fore tailored against contextual information in the case history. Basically, Axiom 3 is
applied to see if an effect of some action causes a property shared by some abnormality
state, or more simply, the effect has the same property as an abnormality state and the
two overlap. These are examples of additive interactions where an action, through one
of its effects, accentuates an abnormal situation. The detected accentuation from the
“expected” (i.e., without external interference) evolution of a failure process should be
noted in the relevant hypothetical world. A therapeutic action accentuates an abnor-
mal situation through one of its adverse side effects; normally, however, a therapeutic
action aims to nullify an abnormal situation through its targeted consequences. This is
the case of a subtractive interaction between an action effect and an abnormal state; the
two overlap and represent exclusive (or nullifying) properties. Here, depending on the
strength of the subtractive interaction, the abnormal state and all the subsequent abnor-
malities that depend entirely on it are revoked or suitably reduced (their persistence is
clipped).

"We assume that a hypothetical world is consistent; i.e., it does not include temporally overlapping nodes
with mutually exclusive properties. Conflicts can be resolved if the properties concerned neutralize each other, e.g.,
“water retention” and “water loss.” In such cases, the relevant nodes (time-objects) are replaced with (or become
the components of) a single neutral node.
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3.4. Accountings® and Conflicts

In this section we define binary predicates accounts-for and in-conflict-with that are
subsequently used for the definition of the primitive evaluation criteria. Each (primitive)
evaluation criterion measures, from some conceptual perspective, the goodness of fit
between the case history and some potential diagnostic solution.

Predicates accounts-for(t;, 7;) and in-conflict-with(r;, 7;) take time-objects as argu-
ments. Instances of these predicates are evaluated with respect to some consistent col-
lection of time-objects and their interrelationships, the evaluation domain, e.g., the case
history, or a hypothetical world. By default, this is taken to be the domain of the first
argument, and thus we refer to ground instances:

e accounts-for(t;, 7;). Time-object 7;’s assertion, in the given evaluation domain, can
account for time-object 7; being asserted in the same evaluation domain. The pred-
icate is reflexive and transitive.

o in-conflict-with(t;, 7;). Time-object 7’s assertion, in the given evaluation domain,
denies the assertion of time-object 7; in the same evaluation domain. The predi-
cate is symmetric.

These predicates can be instantiated for: a failure or therapeutic action accounting
for some (observed) fault, a failure or therapeutic action conflicting with (observed)
faults, (observed) faults satisfying/refuting expected manifestations of failure hypothe-
ses, (observed) faults satisfying/refuting required preconditions/expected effects of
hypothesized actions. They are defined through the following Axioms.

Axioms for predicates accounts-for and in-conflict-with.

4: accounts-for (1;, 7;) < ((w(1;) = w(1))) AT; C=1T;)

5: accounts-for (1, 7;) < 37, (contains (7, T, )A accounts-for (i, 7;))

6: accounts-for (t;, 7;) < 37, (causality-link (i Tk) A accounts-for (y, T;))
7. accounts-for (7, 7;) < 37y, 7, (causality-link (t;, T,) A contains (T, T;)

A accounts-for (7, T;)A assumed (7,))
8: in-conflict-with (7;, 7;) < (excludes (m(7;), 7(t;)) A = (7; disjoint ;)
9: in-conflict-with (7;, 7;) < 37, (contains (7, 7,) A in-conflict-with (7, 7;))
10: in-conflict-with (7;, 7;)<> 37, (casuality-link (75> Ti)A in-conflict-with (Ty, 7;))
11: in-conflict-with (7;, 7;)% 374, T, (casuality-link (T, T)A contains (1, T)A
in-conflict-with(t,, ;)\ assumed(7,))

Predicate assumed, used in Axioms 7 and 11, is defined as follows:
assumed(t;) <= 31; (assumed (7;) A causality-link (T, 7))
assumed(t;) <= — (37; (contains  (7;, ;) A — assumed(7;)))
assumed(t;) <= 37; (contains  (7;, 7;) A assumed(7;))

assumed(t;) <= —(37; causes (7, 7, _,_))

Thus a time-object 7; accounts for another time-object 7; either directly (Axiom 4)
or indirectly through one (if any) of its component time-objects (Axiom 5) or one (if

8In the absence of a better term, we use accounting as a noun for that which accounts for something. It seems
to be a better antonym for conflict than is explanation.
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any) of its established causal consequent time-objects (Axiom 6). For a direct account-
ing, the property of 7; implies (i.e., subsumes) the property of 7; (recall that function
gives the property of a time-object), and the existence of T; covers completely the exis-
tence of 7; (this is expressed in terms of the temporal relation C=). Partial accountings
are not dealt with. Axiom 7 warrants closer inspection. The general representation of
the Axiom is illustrated in Figure 11(a). The same figure gives an acceptable application
of the Axiom (Figure 11b), as well as an unacceptable application of it (Figure 11c).
Under the acceptable scenario, 7; is an established causal antecedent for T, which
in turn constitutes part of an established compound causal antecedent for 7;; strictly
speaking, T; accounts only partly for 7;. Under the unacceptable scenario, 7; is an estab-
lished causal antecedent for T, but T, plays no part in establishing the accounting of
7; by 7,; this is done through another component of ,, 7,, (and via Axiom 5 it can be
inferred that 7, accounts for 7;). In short, although a time-object can inherit from one
of its components some accounting relation, the opposite is not true unless all its com-
ponents are collectively involved in establishing the particular accounting relation; the
latter can only happen in the case of compound causal antecedents. Hence, to exclude
unacceptable scenarios, Axiom 7 can be reformulated as follows (see Figure 11d):

7: accounts-for (1;7;) < 3 77,7, (causality-link (T;m1) A contains  (T,m) A
causality-link (75 Tw) A accounts-for(t,, 7;) A assumed(t,))

Predicate in-conflict-with is similarly defined to predicate accounts-for. Thus a time-
object 7; is in conflict with another time-object 7; either directly (Axiom 8) or indirectly
(Axioms 9 through 11). For a direct conflict, the properties of 7; and 7; are mutually
exclusive (expressed in predicate excludes ), and the existences of 7; and T; are not
disjoint (expressed in temporal relation disjoint ). Axiom 11 corresponds to Axiom 7,
and hence a similar problem arises to the one discussed above for Axiom 7. Thus

assumed?

Tn
.
° ’m’"m@

for

(a) General representation of axiom 7

(b) Acceptable application of axiom

assumed?

(d) New formulation of axiom 7

key:
—— causdity-link

FIGURE 11. Axiom 7 (for the derivation of predicate accounts-for).
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Axiom 11 can be reformulated as follows:

11: in-conflict-with(t;, 7;) < 3 74, 7,, T, (Causality-link (t;, T¢) A contains (1,
T,) A causality-link (7> Ty) N in-conflict-with (7, 7;) A assumed (T,))

Predicates accounts-for, in-conflict-with, and assumed are computationally expensive.
Each of these entails branching based on causes and containment arcs. More specifically,
accounts-for(t;, 7;)/in-conflict-with(t;, 7;) generates a search that grows forward in time
with the objective of piecing together an admissible path from node 7; to some node T,
say, that directly subsumes/conflicts with 7; (; could be the same as 7;); the initial node
7; is hypothesized or directly assumed, e.g., observed. An admissible path is defined
below.

Definition 1: Admissible Path. A sequence of time-objects Ty, T, ..., T, forms an
admissible path iff

Vi=1,...,(n— 1)(causality-link (t;, Tiy1) vV contains  (7;, T4 q)
Vv isa-component-of (7, T;,1))

Let 7;, 7}, and T, be three consecutive time-objects on some admissible path, and
let R;; denote the relation from 7; to 7, and let R denote the relation from 7; to 7.
On the basis of the new formulations of Axioms 7 and 11, it follows that

(R;; # isa-component-of V R # contains ).

A causality-link is established through Axiom 2 or Axiom 3, each of which
ensures that any conditions are satisfied (by the case history). Likewise, a conditional
component is only used if the relevant conditions are satisfied, as dictated by Axiom 1.

causality-link can be associated with uncertainty. Thus, strictly speaking, an
accounting relation between 7; and T; is not categorical, but it has a degree of uncer-
tainty given, say, by the product of all the causality uncertainties involved in the admis-
sible path from 7, to 7; (similarly for a conflicting relation). Hence, if there is more than
one admissible path from 7; to 7;, the path with the minimum uncertainty (maximum
certainty) ought to be used; this entails computing all the admissible paths, which is even
more expensive computationally. Since uncertainty is not the issue here, for reasons of
simplicity, accountings and conflicts are considered certain.

The derivation of predicate assumed(t;) generates a search that grows backward
in time with the objective of piecing together (in a backward fashion) an admissible
path from some node 7;, which may be directly assumed, to node 7;. A node is directly
assumed, in some context (say, a hypothetical world), if it does not have any potential
causal antecedents. This is not to say that the particular node is necessarily a primary
cause, just that it may be considered a “starting” state in the particular context. A
compound node is assumed if none of its expected components is revoked (i.e., each of
them may be assumed). Similarly, a node is assumed either because it is contained in
an assumed node or because it has an assumed direct causal antecedent.

Axioms 4 through 11 treat their second argument as an atomic time-object. The fol-
lowing complementary Axioms apply to compound time-objects and derive an account-
ing/conflict through their components:

Axiom 12. accounts-for(t;, 7;) < V1, s.t. contains (7}, 1) {accounts-for(t;, 7;)}

Axiom 13. in-conflict-with(t;, 7;) < 3 7 s.t. contains (7, 7;) {in-conflict-with

(7> i)}
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The application of Axiom 12 results in constructing an admissible path to each com-
ponent of 7; that emanates from 7; (or some component of it). If a component of ; is
itself a compound time-object, the application of Axiom 12 can be repeated with respect
to that component (see Figure 12a). The application of Axiom 13 results in constructing
at least one admissible path emanating from (some component of) 7; and leading to
some time-object (in the evaluation domain) that directly conflicts with a component of
7; (see Figure 12b). The case history CH or some potential diagnostic solution S can be
viewed as compound time-objects containing all the time-objects that comprise them.
Hence we can formulate, in a simple way, compound queries such as “accounts-for(S,
0)?” or “in-conflict-with(CH, S)?” where O is the compound time-object comprising
all the abnormal observations. The evaluation domains for these queries consist of the
single time-objects S and CH, respectively.

Figure 13 gives a high-level layered organization of the various Axioms that play
a part in the evaluation of the potential diagnostic solutions. The processing elements
are time-objects. At the bottom layer we have the Axioms (1-3) for deriving relations
causality-link and contains , both of which involve temporal constraints. The
role of these Axioms is in integrating the components of a solution. At the next layer
we have the Axioms (4-13) that define predicates accounts-for and in-conflict-with (and
the auxiliary predicate assumed). Relations causality-link and contains  play a
central role in the derivation of accountings and conflicts between time-objects. The
latter form the basis for the definition of the primitive evaluation criteria that occupy
the next layer of this organization. As we move up this hierarchy, the handling of time
becomes less visible as it gets hidden behind the axioms at the lower layers. Temporal
reasoning is clearly visible in the derivation of causality-links and in the basic
axioms for accounts-for and in-conflict-with. However, the definitions of the primitive
criteria do not address time directly. This abstraction is a strength, since the same

— = admissible path

(a) Accounting compound time-objects by decomposing them to their components

admissible path
leading to the refutation
of acomponent

(b) Establishing a conflict with a compound time-object through one of its components

FIGURE 12. Deriving accountings/conflicts of compound time-objects through their components.
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Axiomsfor deriving relations causality-link and contain

in order to obtain amore integral (coherent) picture for a
potential diagnostic solution or the case history

Relations causality-link and contains are
used in the derivation of accountings and conflicts
between time-objects

Axiomsfor predicates accounts-for and in-conflict-with
and auxiliary predicate assumed

Accountings and conflicts between time-objects form the
basis for the definition of the primitive evaluation criteria
for potential diagnostic solutions

Primitive Evaluation Criteria
Coverage, Consistency, Strength of Integration, Satisfiabilit
Ambiguity, Redundancy, Minimality, Optimality

Used to compose appropriate definitions for
plausible and best explanations

Axioms defining plausible explanation
(hard constraints)
(application specific)

Selecting plausible diagnostic solutions

Axioms defining best explanation
(soft constraints)
(application specific)

Selecting out of the plausible solutions the best ones

FIGURE 13. Layered organization of axioms.

definitions can apply to atemporal solutions. The higher two layers, built on top of
the primitive criteria, are application-specific; they specify the appropriate notions for
plausible and best explanations.

3.5. Deduction within Abduction

In concluding this section we explain how, in the proposed framework, deductive
reasoning is employed in the context of abductive reasoning. The overall reasoning
performed is abductive because the goal is to generate the best explanation of some
collection of observations of abnormality. In achieving this goal, though, deductive infer-
encing is necessary. As Pople (1973) points out in his classic paper on the mechaniza-
tion of abduction, to which the interest of the Al community in abductive inference
is attributed, in a deduction, the objective is to determine whether some statement is
true. In an abduction, the objective is to determine why something is true (i.e., why the
observed abnormalities hold). In answering the why question, it is obviously important
to be able to determine whether; thus deduction may be considered to be a process
subordinate to abduction (Pople 1973, p. 150).

Abduction is far more complicated than deduction. A queried statement may be
deduced (derived) in a multitude of ways, and any of these suffices; effective deductive
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systems are able to follow the simplest derivation paths, but this is an implementation
rather than a conceptual issue. In abduction, it is not sufficient just to generate one
plausible explanation of the observed situation; instead, all plausible explanations need
to be compared and contrasted. An explanation is usually not deducible, and so once
an explanation is hypothesized, it is not possible to deduce it.

In this section we have presented the basic mechanisms for the formation and
integration of potential diagnostic solutions (explanations). The processing of primary
and secondary triggers is clearly abductive in nature. However, the overall instantiation
of a failure model and its integration with other failure instantiations makes extensive
use of Axioms 1 to 3, which are used deductively. In this section we have also defined
predicates accounts-for and in-conflict-with (Axioms 4-13) that form the foundations for
the definition of the primitive evaluation criteria to be discussed in the next section.
While the notion of “evaluation of competitors” is not relevant to deductive reasoning,
the evaluation of competing explanations is a critical aspect of abductive reasoning. The
primitive evaluation criteria represent constituents of higher-level abductive inferences.
Within these criteria, though, Axioms 4 to 13 are used in a deductive manner.

4. EVALUATION CRITERIA FOR DIAGNOSTIC SOLUTIONS

In this section we present a number of primitive, general criteria for the evalua-
tion of potential diagnostic solutions (hypothetical worlds), as summarized in Table 1.
In our framework, a potential diagnostic solution is a collection of interrelated time-
objects (corresponding to failure model instantiations) some of which are designated
as diagnoses—these correspond to failure time-objects. A central evaluation question,
in an abductive context, is “Does this diagnosis account for the observation of this
fault?” Hence, for evaluation purposes, a potential diagnostic solution is abstracted to
its set of diagnoses, or hypotheses. A potential diagnostic solution is a dynamic entity;
the contents of some solution §; at time ¢ is denoted by S, ,.

The case history CH is also a dynamic entity. Its contents at time ¢ is denoted
by CH,. This is partitioned into the dynamic subsets of focus-abnormalities (faults to
be accounted for) F, and contextual information C,; contextual information, including
normal observations, does not need to be explained. F, and C, are disjoint sets. The
elements of F, are assumed to be mutually independent. Thus,

CH,=F,UC,.

Focus-abnormalities can be classified into sard abnormalities and soft abnormalities.
Hard abnormalities are serious abnormalities, whereas soft abnormalities are moderate
or mild abnormalities, some of which may in fact be attributable to “natural” causes.
Whether a time-object represents a hard or a soft abnormality depends on its property
and/or duration. For example, headache for an hour is a soft abnormality, but contin-
uous headache for days is a hard abnormality. A competent diagnostic system should
be able to decide by itself whether a focus-abnormality is soft or hard. Furthermore, F,
can be partitioned into current and past focus-abnormalities. Thus,

F, = hard, U soft,

F, = past, U current,.

[13

In the following discussion, any reference to “a diagnostic solution” means “a
potential diagnostic solution.” Also, for reasons of simplicity, we use the symbol S,
to mean S, ,.
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TasLeE 1. Primitive Evaluation Criteria For Potential Diagnostic Solutions

SUPPLY TABLE

4.1. Coverage and Consistency

Definition 2. A diagnostic solution S, has focus-coverage iff it accounts for every focus-
abnormality:

focus-coverage(S,) < Vf; € F, 3h; € S, s.t. accounts-for(h;, f;).

By treating S, and F, as compound time-objects, the definition of focus-coverage is
simplified to
focus-coverage(S,) < accounts-for(S,, F,).

Definition 3. A diagnostic solution S, has hard-coverage iff it accounts for every hard
focus-abnormality:

hard-coverage(S,) < Vf; € hard, 3h; € S, s.t. accounts-for(h;, f;).

Definition 4. A diagnostic solution S, has current-coverage iff it accounts for every cur-
rent, hard focus-abnormality:

current-coverage(S,) < Vf; € (current, Nhard,) 3h; € S, s.t. accounts-for (h;, f;).

Axiom 14. focus-coverage (S;) = hard-coverage(S;)
Axiom 15. hard-coverage(S,) = current-coverage(sS,)

Definition 5. A diagnostic solution S, is case-consistent iff it is not in conflict with any
of the data in the case history:

case-consistent(S,) < Vd; € CH, =(3h; € S, s.t. in-conflict-with(h;, d;))

or

case-consistent(S,) < —in-conflict-with(S,, CH,)
by treating S, and CH, as compound time-objects.

Thus a datum is assumed, by default, to be consistent with some diagnostic solution,
unless the latter entails a direct conflict with that datum. This applies to both observa-
tions of normality and abnormality. Although this is the standard approach with respect
to observations of normality, it is not so for observations of abnormality if the closed-
world assumption is applied (see Section 4.5). However, by assuming consistency, in a
sense we acknowledge the inherent incompleteness of our diagnostic theories.

Definitions 6 to 9. A diagnostic solution S, can be similarly defined to be consistent
with the focus-abnormalities (focus-consistent), the contextual data (context-consistent),
the hard focus-abnormalities (hard-consistent), or the hard current focus-abnormalities
(current-consistent).
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The most restrictive form of coverage is focus-coverage; hard-coverage and current-
coverage represent successively more relaxed forms of coverage (Axioms 14 and 15), and
in fact, other forms of coverage may be defined. Similarly, the most restrictive form of
consistency is case-consistent, whereas focus-consistent, hard-consistent, etc. represent
reduced forms of consistency. The ideal expectation is for the concluded diagnostic solu-
tion to have focus-coverage and to be case-consistent. In real life, especially for medical
diagnostic problems, this expectation is rarely attained, and thus explanation plausi-
bility may not require focus-coverage. Console and Torasso (1991b) propose a way of
integrating abductive and consistency-based approaches to diagnosis by combining the
criteria of coverage and consistency. More specifically, they propose that a subset of
the overall set of case observations be selected for coverage, while the complement
of the closure of the observations, with the observations, is required to be consistent
with the solution. In this proposal, time is abstracted out, presumably to simplify the
computation of the closure of the observations. Depending on the choice of the subset
of the observations to be covered, which the proposers describe as the critical step, dif-
ferent notions of coverage and thus explanation plausibility can be formulated, varying
from the very restrictive (everything has to be covered, both observations of normality
and abnormality) to the very relaxed (nothing needs to be covered). For the choice of
the “best” explanation, the proposers suggest the criterion of minimality of abnormality
assumptions (smallest number of assumed failures) or minimality by implication (E; is
better than E; if E; implies E;).

4.2. Points of Failure and Strength of Integration

Definition 10. A diagnostic system functions under a single-point-of-failure assumption
if, at any time, any diagnostic solution includes at most one diagnostic antecedent. This
means that focus-abnormalities have a single cause.

Definition 11. A diagnostic system functions under a multiple-points-of-failure assump-
tion if, at any time, any diagnostic solution can include more than one, possibly inde-
pendent diagnostic elements, i.e., more than one independent causal antecedents. Thus,
under this assumption, focus-abnormalities can be partitioned between separate,
independent causes.

Definition 12. A diagnostic solution S, is strongly-integrated (or coherent) if it is not split
into disconnected parts.

Definition 13. A diagnostic solution is loosely-integrated (or incoherent) if it consists of
disconnected parts.

Axiom 16. single-point-of-failure (§,) = strongly-integrated(S,)

Axiom 17. loosely-integrated (S,)= multiple-points-of-failure(s,)

43. Satisfiability

The coverage of some solution is a measure of how well it accounts for the focus
abnormalities. The satisfiability of some solution is a measure of how well the expec-
tations of the diagnostic elements are satisfiable by the case history. Let S, be some
(abstracted) diagnostic solution consisting of a number of diagnostic (hypothesis) ele-
ments /;. Function refined, applied to S,, gives the entire set of time-objects comprising
the diagnostic solution, not just the hypothesis elements.
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FIGURE 14. Mutually independent expectations of hypothesis elements.

Definition 14. The expectations of hypothesis element #; € S, are defined to be
expectations(h;) = {e; € (refined(S,)\{h;})laccounts-for(h;, e;)}.

Thus the expectations of /; are its components and consequents. Such elements are
not necessarily mutually independent. Definition 15 gives the most general (least dis-
tant), mutually independent expectations of some hypothesis element (see Figure 14a
for an illustration), whereas Definition 16 gives the least general (most distant) expec-
tations (see Figure 14b for an illustration). Which of these definitions (or some other
definition) for independent expectations is actually employed in the scope of some eval-
uation would depend on the particular circumstances. Time is relevant in this choice
because the evaluation can only consider past and ongoing (rather than future) expec-
tations. The observability or not of expectations is also of relevance. The most general
(least distant) expectations are more likely to be past or ongoing but less likely to be
observable, whereas the opposite is true for the least general (most distant) expectations.

Definition 15. The most general (least distant), mutually independent expectations of
h; € S,, indep-exps(h;), are defined to be

indep-exps(h;) = {e; € expectations(h;)|—=3e; € (expectations(h;)\{e;})

s.t. accounts-for (ey, e;)}
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Definition 16. The least general (most distant), mutually independent expectations of
h; € S,, indep-exps(h;), are defined to be
indep-exps(h;) = {e; € expectations(h;)|—3e; € (expectations(h;)\{e;})

s.t. accounts-for (e;, e;)}

Definition 17. Depending on the choice of definition for indep-exps, the mutually inde-
pendent expectations of some diagnostic solution S, = {Ay, h,, ..., h,}, Exps(S,), are
defined to be

Exps(S,) = indep-exps(hy) U indep-exps(h,) U - - - Uindep-exps(h,,)

These expectations can be classified temporally into past, ongoing, or future. Fur-
thermore, they can be classified qualitatively into typical, necessary, common, occasional,
etc. A typical expectation has a “pathognomonic” association with some hypothesis ele-
ment, i.e., observing the expectation establishes the hypothesis. A necessary expectation
is one whose refutation denies the particular hypothesis.” A common expectation of
some hypothesis element occurs with most actual occurrences of the given failure; its
observation supports the hypothesis, and its refutation may mildly discount the hypoth-
esis. An occasional expectation only occurs sometimes; its observation supports the
hypothesis, but its refutation does not need to be explained. Based on the temporal and
qualitative classifications of the expectations of some solution, different satisfiability
criteria can be defined, as illustrated in the following definitions.

Definitions 18 to 20. A diagnostic solution S, is N/T/C-satisfiable iff all its observable,
past and ongoing, necessary/typical/common expectations are satisfiable (accounted for)
by the case history CH, (which is treated as a compound time-object):
N-satisfiable(S,) < Ve; € Nexps(accounts-for(CH,, e;) Vv (negative(e;)
A —in-conflict-with(CH,, e;)))
T-satisfiable(S,) < Je; € Texps(accounts-for(CH,, e;))
C-satisfiable(S,) < Ve; € Cexps(accounts-for(CH,, e;) Vv (negative(e;)
A —in-conflict-with(CH,, e;)))

where Nexps = observable(Exps(S,)) N necessary(Exps(S,)) N (past(Exps(S,))
U ongoing(Exps(S,)))
Texps = observable(Exps(S,)) N typical(Exps(S,)) N (past(Exps(S,))
U ongoing(Exps(S,)))
Cexps = observable(Exps(S,)) N common(Exps(S,)) N (past(Exps(S,))
U ongoing(Exps(S,)))
9 Failures with pathognomonic or necessary expectations (faults) can be deduced. Let f be a failure, p a

pathognomonic fault of f, and n a necessary fault of f. Thus we have: holds(p) = holds(f) and —holds(n) =
—holds(f).
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Negative expectations (those involving normal properties) are satisfiable by default
unless they conflict directly with the case history. Typical expectations cannot be neg-
ative. If S, is not N-satisfiable, some of its diagnostic elements need to be revoked.
Similarly, if S, is T-satisfiable, some of its diagnostic elements need to be concluded,
and in fact, if some other potential diagnostic solution (hypothetical world) is in con-
flict with such conclusions, it would need to be (partially) revoked. Typical expectations
are not necessarily common expectations, and hence C-satisfiable(S;) does not entail
Tsatisfiable(S,). If S, is C-satisfiable, it has a good chance of being the final solution.
Often though, complete C-satisfiability is not attained (or even possible to establish
or refute due to missing information), and hence what is considered is the degree of
C-satisfiability strengthened by the number of the occasional expectations that are sat-
isfiable, i.e., (NC + NO)/(TNC + NO), where TNC is the total number of relevant
common expectations, NC is the number of the relevant common expectations that are
satisfiable, and NO is the number of the relevant occasional expectations that are sat-
isfiable. Moreover, the common expectations can be further classified, thus generating
even more measures of satisfiability. In order to compute some satisfiability measure for
a pursued diagnostic solution, the diagnostic system would need to ask its user various
questions concerning unknown expectations (this is a deductive aspect of the system).
In the ideal situation, the concluded solution is completely satisfiable.

Definition 21. A diagnostic solution S, is completely satisfiable iff all its relevant nec-
essary expectations are satisfiable and either all its relevant common expectations are
satisfiable or any of its relevant typical expectations are satisfiable:

satisfiable(S,) < (N-satisfiable(S,) A (C-satisfiable(S,) v T-satisfiable(S,)))

A knowledge conflict arises if S, is not N-satisfiable but is T-satisfiable.

4.4.  Ambiguity, Redundancy, and Minimality

Definition 22. The explanation of finding f; € F, at time ¢, with respect to some diag-
nostic solution S,, is defined to be
explanation (f;) = {h; € S, | accounts-for(h;, f;)}.

If explanation,(f;) = {}, no explanation is on offer by S, for abnormality f; at time *.
If, on the other hand, |explanation,(f;)| > 1, two or more explanations are on offer;
S,’s explanation for f; is ambiguous.

Definition 23. A diagnostic solution S, is ambiguous iff it contains ambiguous explana-
tions for focus-abnormalities; otherwise, it is crisp:

ambiguous(S,) < f; € F, s.t. lexplanation (f;)| > 1
crisp(S,) < —ambiguous(S,).
The ideal requirement is for crisp solutions.

Definition 24. The ambiguity of a diagnostic solution S, is defined as

ambiguity(S,) = {{f, exp) € exp-power(S,)|lexp| > 1}.

where exp-power(S,) = {(f, explanation,(f))| f € F,}. An alternative definition for a
crisp solution is

crisp(S,) < (ambiguity(S,) = { }).
Thus an empty solution is a crisp solution.
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Definition 25. A diagnostic solution S, is redundant iff a strict subset of it has the same
coverage:

redundant(S,) < 3S; C S, s.t. coverage(S;) = coverage(S,).

where coverage (S,) = {fI{f, exp) € exp-power(S,) A |exp| # 0}. The coverage of a
diagnostic solution is the subset of focus-abnormalities explained by it (the quality of
coverage depends on whether it is mostly hard or soft abnormalities that are covered).
Definitions 2 to 4 can be formalized alternatively in terms of coverage:

focus-coverage(S,) < (F, = coverage(S,))
hard-coverage(S,) < (hard, < coverage(S,))

current-coverage(S,) < ((hard, N current,) < coverage(S,)).

A single-point-of failure solution cannot be redundant.

Let A, be the subset of S, each element of which constitutes the sole explanation
for some element of F,, and let (), be the subset of S, such that for each element of (},
there is some element of F, for which it constitutes an alternative explanation:

A, =Uexp; s.t. (f;, exp;) € exp-power(S,) A lexp;| =1
O, =Uexp; s.t. (f;, exp;) € exp-power(S;) A lexp;| > 1.

If Q, = {}, S, is crisp; otherwise, it is ambiguous (alternative formalization for
Definition 23).

Theorem 1. An ambiguous diagnostic solution S, is nonredundant if ), C A,.

Proof. If ), € A,, then every element of (), is, in addition to being an alternative
explanation for some focus-abnormality, the sole explanation for some other focus-
abnormality. Thus, by removing any element of ), the coverage of S, is reduced. Hence
), is necessary for maintaining the given coverage. O

Theorem 2. An ambiguous diagnostic solution S, is redundant if (), ¢ A,.

Proof. The nonempty set (), — A,) gives elements of S, none of which constitutes the
sole explanation for some focus-abnormality. Let (0, € (€2, — A,) be defined as

Q) ={w e (Q,—A,) | Vf; € F, s.t. accounts-for(o, f;)(IN € A, s.t. accounts-for(\, f;))}.

A procedural derivation for )] is given below. ), # {} (see proof below). Thus, by
removing (), from S,, its coverage is not affected:

coverage(S, — ;) = coverage(S,)
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Procedural Derivation for ().

let A} < A, and Q) < {}
repeat for every f; € F,
if explanation,(f;) < (0, — A))
then let o be some element of explanation,(f;)
A; — (AU {0))
end if
Q) < (MU (explanation,(f;) — A}))
end repeat;

Proof that (), # { }. By definition, (2, — A;) # { }. The base case is that (), — A,)
consists of a single element, say, w. Since w is not the sole explanation for any of the
focus abnormalities, it means that every focus abnormality has an element of A, as its
(alternative) explanation, and thus (), = {w}. The general case is that ({), —A,) consists
of more than one element, say, two elements, w; and w,. In this case it is possible that
there is some focus abnormality f; such that explanation,(f;) = {w;, w,}. Thus either
w; or w, can become a member of ()}, say, w;, and f; would still have an explanation,
;. If ; constitutes an explanation for another focus-abnormality, say, f;, ®; cannot be
the sole explanation for f;; thus f; still has an explanation that also could be ,.

Theorem 3. A crisp diagnostic solution S, is nonredundant.

Proof Since ), = {}, every element of S, is necessary to maintain the given coverage.
O

Theorem 4. A redundant diagnostic solution S, is ambiguous.

Lemma. For a redundant solution, Q, # { } and Q, ¢ A,.

Proof of Lemma. By Definition 25, since at least one element of S, is not necessary
and thus cannot constitute the sole explanation of some focus abnormality.

Proof of Theorem 4. Through the lemma, (), # { }, and thus §, is ambiguous.

Definition 26. A diagnostic solution S, is minimal iff, at the given time, there is no
other solution with lower cardinality and at least the same coverage:

minimal(S,) & —(30, s.t. |Q,| < |S,| A coverage(Q,) 2 coverage(S,)).

Axiom 18. redundant(S,) = —minimal(S,)
Axiom 19. minimal(S,) = —redundant(S,) (contrapositive of Axiom 18).

Definition 27. The concluded diagnostic solution S; ; is optimal iff it has focus-
coverage and it is case-consistent, satisfiable, strongly-integrated, and minimal:

optimal(S; ) & (focus-coverage(S; ) A case-consistent(S; ) A satisfiable(S; )

A strongly-integrated(S; ) A minimal(S; )).
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4.5. A Word on the Closed-World Assumption

In this section we discuss the viability of the closed-world assumption (CWA) with
respect to dynamic diagnostic problems. First, we explain the application of the CWA
to a case history or a hypothetical world. (It is assumed that relevant temporal data
abstractions are applied to the case history so that maximal persistences of the time-
objects comprising the history are derived.)

Let P be the universe of discourse of properties (sentences) under the particular
application context, and let N C P be the subset of negative properties (those assert-
ing normal situations). To each n; € N there corresponds a set of positive properties
(asserting abnormal situations) ps; C P, where Vp; ; € ps; {excludes (n;, p; ;)}; n; is
mutually exclusive with respect to every element of ps;. All clusters of positive proper-
ties ps; are disjoint, and the elements of N are mutually independent.

Let o be the concrete time-axis that defines the span of valid time of relevance to
the diagnostic activity, and let Times(a) = {t;, t,, ..., t,}. We assume that Times(o) is
a finite set.

Applying the CWA to the case history and hypothetical worlds. Let CH, be the
believed history of the case at real time . The CWA essentially dictates the addition of
various normality assumptions to the case history. The algorithm for this is given below:

Algorithm for applying the CWA to the case history at time t.

repeat for each t; € Times(o)
repeat for each n; € N
let 7; be a time-object such that w(t;) = n; and &(7;, ) = (1, #;, closed )
/* 7; has property n; and exists as a point-object on a*/
if —accounts-for(CH,, 7;) A= in-conflict-with(CH,, ;)
then add 7; to CH, as an assumed time-object (normality assumption)
end repeat
if n; is a concatenable property
then apply a merge operation on the newly added time-objects
to derive maximal persistence
end repeat

The normality assumptions are, of course, revocable, since the case history is dynamic
(the beliefs about the particular case can change). Hence, at a subsequent point in time,
t+, say, these assumptions are automatically revoked and recomputed on the basis of
CH . Thus the relevant normality assumptions can be added and deleted many times
during the diagnostic activity. The same algorithm just given applies to a hypothetical
world §; ,. Again, since a hypothetical world is dynamic, the normality assumptions need
to be continuously revoked and recomputed.

It therefore appears that the viability of the CWA in dynamic situations depends
on whether the benefits (of more accurate evaluation of potential solutions) accruing
from its use outweigh its computational overheads. The only evaluation measure that is
affected by the CWA is the consistency measure because the inclusion of the normality
assumptions is likely to increase the number of inconsistencies with a potential diag-
nostic solution. The coverage measures are not affected because these consider only
abnormality observations. Similarly, the satisfiability measures are not affected because
the normality assumptions included in a hypothetical world do not participate in the
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relevant sets of expectations—an expectation that is satisfiable without the application
of the CWA is still satisfiable when the CWA is applied and an expectation that was not
satisfiable (either false or unknown) is still unsatisfiable (although an unknown expecta-
tion can become a refuted expectation under the CWA). Thus the CWA appears to be
viable only in situations where all the (abnormality) information about a case is known
and given prior to the start of the diagnostic activity and nothing changes during the
progress of the diagnostic activity; the beliefs about the case remain constant during
the period [O, G], ie.,, CHy = --- = CH, = --- = CH. Under such a scenario, the
hypothetical worlds can be completely computed on the basis of the a priori information
(there is no need for any dynamic interactions with the external world—the user of the
system—for the acquisition of new information that possibly revokes current beliefs).
For many real-life diagnostic problems, however, the case information is initially incom-
plete; new observations, referring to the past or the present, are continuously acquired
during the diagnostic activity. Further, human diagnosticians do not appear to employ
the CWA. These characteristics tell against the CWA for dynamic diagnostic problems.

5. EVALUATION CRITERIA IN THE SDD SYSTEM

In this section, for illustration purposes, we briefly discuss the primitive evaluation
criteria used in the SDD system and how they are combined to give the specific notions
of plausible and best explanation. The algorithmic details of the overall diagnostic logic
of this system are outside the scope of this article, but the interested reader is referred
to Keravnou et al. (1994). SDD is a system that helps general radiologists, who are not
expert in the domain of skeletal dysplasias and malformation syndromes, achieve the
diagnostic performance of domain experts. SDD recently underwent a second phase of
clinical trials whose results are quite favorable for the system; more specifically, it has
been shown that general radiologists can perform better when using SDD than when
using the standard method of diagnosis (through textbooks) (Washbrook et al. 1997).

SDD diagnoses under the single-disorder assumption, as has been discussed in
Section 3. Most skeletal dysplasias and malformation syndromes are infinitely persistent
with fixed, sometimes relatively narrow initiation margins. However, their expectations
can be finitely persistent, recurring, etc., and for most of the finitely persistent expec-
tations, margins for their expected durations are known. Apart from their temporal
classification (infinitely or finitely persistent, etc.), expectations are qualitatively clas-
sified into typical, necessary, common, and occasional. In addition, various subsets of
the common expectations are singled out as especially significant and named sufficient
groups. Disorder models are abduced via the mechanisms of primary and secondary
triggers, and secondary triggers play an important role as differentiators of potential
solutions. A patient history consists of temporal information (clinical, radiologic, bio-
chemical, etc. findings on the patient) that is classified into hard abnormalities, other
abnormalities, and contextual information.

Since the system operates under the single-disorder assumption, any potential solu-
tion, at any time, consists of a single-disorder instantiation, i.e., a single diagnostic ele-
ment. Thus each potential solution is at all times strongly integrated (coherent), crisp,
nonredundant, and minimal. The primitive evaluation criteria that are used are hard-
coverage, focus-coverage, T-satisfiable, N-satisfiable, C-satisfiable (augmented with
established occasional expectations), and S-satisfiable; the latter criterion concerns the
satisfiability of sufficient groups. Thus there is no need for data consistency criteria.
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Next we outline the combinations of evaluation criteria that are used in different
reasoning contexts. The term differential is used to denote the subset of hypothetical
worlds (potential solutions) that are being actively considered. The initial differential
consists of a subset of the disorder instantiations triggered on the basis of the initial
contents of the patient history (CH,)). More specifically, the initially triggered disorders
are evaluated from the perspective of focus-coverage and S-satisfiability. Owing to data
and knowledge incompleteness, it is rare for a triggered disorder to attain complete
focus-coverage and S-satisfiability, and hence the degree of attainment is computed. For
each evaluation criterion, the topmost disorder and those close to it are selected. Subse-
quent differentials are drawn from the subset of most promising disorder instantiations
where the promise is evaluated on the basis of hard-coverage. The elements of these
differentials are again evaluated on the basis of the combined criteria focus-coverage
and S-satisfiable, but in this context S-satisfiability is used as the primary criterion and
focus-coverage as the secondary criterion. Throughout the diagnostic activity (i.e., ini-
tially and every time new information on the patient is acquired), all instantiated disor-
ders, whether or not they belong to the current differential, are evaluated on the basis of
criteria T-satisfiable and N-satisfiable. T-satisfiability concludes the particular disorder
instantiation, whereas the negation of N-satisfiability revokes it. Finally, in the context
of summarizing and presenting to the user the system decisions, criteria focus-coverage
and C-satisfiable are used.

The notions of plausible and best explanation employed in any diagnostic system
are quite critical to its overall performance. Our experience in developing SDD shows
that eliciting such notions from the domain experts is difficult and that the notion of
best explanation is much harder to formalize than that of explanation plausibility. This
elicitation task for a new diagnostic domain can be aided substantially if the various
primitive, general evaluation criteria can be used as the starting point. In SDD it was
not possible to formalize best explanation in terms of a simple, context-free formula.
Instead, we have arrived at a set of rules giving, in a declarative way, the various context-
sensitive interpretations of this notion. Such rules are very transparent and can be
modified easily; they are given next.

A potential diagnosis constitutes a plausible explanation if it attains a focus-coverage
of at least 50 percent or it is T-satisfiable. This is the minimum requirement.

The rules that define best explanation express further requirements, over and above
the minimum requirement. They are prioritized and applied in descending order of
priority as listed below:

1. The plausible diagnosis is T-satisfiable.

2. The plausible diagnosis is the only one; it attains a focus-coverage of at least 60
percent and an S-satisfiability of at least 60 percent.

3. The plausible diagnosis attains a focus-coverage and an S-satisfiability of at least 60
percent, and both these measures are the highest among the plausible diagnoses.

4. The plausible diagnosis attains an S-satisfiability of at least 60 percent that is the
highest among the plausible ones, it attains a focus-coverage of at least 60 percent
(not the highest among the plausible ones), and it is significantly better than the
plausible diagnosis with the next highest S-satisfiability; where by significantly better
we mean that either its S-satisfiability or its focus-coverage is at least 20 points
higher.

5. The plausible diagnosis attains either an S-satisfiability of at least 70 percent or a
focus-coverage of at least 50 percent, and a close opponent suggests it. An opponent
suggests a hypothesis when it has it as a secondary trigger. An opponent is close
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when it has either an S-satisfiability or a focus-coverage within at least 90 percent
of the corresponding measure. (Clusters of dysplasias that are mutual opponents
are predefined and related through secondary triggers.)

The cutoff percentages that appear in the preceding rules may seem ad hoc, and
to a certain extent they are. They attempt to quantify qualitative expressions from the
experts regarding the differentiation of plausible diagnoses and have resulted from a
number of elicitation and testing sessions of the system. Their values are of secondary
importance to yielding the correct differentiations and hence selections.

The first rule that applies determines the best explanation, which becomes the con-
cluded diagnosis. If two or more plausible diagnoses are considered best explanations,
it might be that the particular patient has a multidysplasia problem. If no rule applies to
any of the plausible diagnoses, no diagnostic conclusion can (yet) be reached (and this
may be the “diagnosis” that an expert would conclude). A concluded diagnosis is truly
the best explanation only if it is shown that it is the correct diagnosis for the particular
patient.

6. CONCLUSIONS

The mechanization of diagnostic reasoning as a special case of abductive inference
has received considerable attention within the Al community (Hamscher et al. 1992;
Struss 1992) and continues to provide fertile ground for research. In this article we
have focused on two aspects of (abductive) diagnostic reasoning that we believe are not
adequately addressed at present. These are time and evaluation.

Time is intrinsically relevant in many diagnostic problems, and as such, temporal
reasoning plays a central role in the formation and evaluation of potential diagnostic
solutions. Time therefore should be an integral aspect of the knowledge and reasoning
of diagnostic systems for these domains. This integration can be achieved by treating
time as an integral aspect of the entities that constitute the processing elements of the
systems. The notion of a time-object captures this requirement, and we have shown how
models of failures (case histories) and normal processes can be modeled in terms of
time-objects.

The essence of any abductive diagnostic system is the generation of the best expla-
nation of some observations suggesting abnormal functioning. The formation and evalu-
ation of potential explanations are tightly coupled processes. We advocate that primitive
evaluation criteria should be separately and explicitly represented to allow their flexi-
ble and transparent combined use in different reasoning contexts and have presented a
number of such criteria. This allows different notions of plausible explanation (minimum
requirements for accepting a potential explanation as plausible) and best explanation
(selection requirements from among plausible competitors) to be clearly formulated.

Early abductive diagnostic systems concealed their evaluation criteria through
opaque scoring functions. In more recent approaches, the widely adopted definition
of plausible explanation as full coverage of (abnormal) observations is restrictive in a
pragmatic sense. We believe that the evaluation aspects of abductive diagnostic reason-
ing warrant further investigation that doubtless will reveal aspects of the formation of
potential explanations.

The ongoing work in the domain of skeletal dysplasias and malformation syndromes
presented in this article has been our main source and test-bed of the proposed ideas,
and the practical results obtained so far (through the SDD system) are very encouraging.
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