
Malware Detection Among Contact
Tracing Apps with Deep Learning

Irene Kilanioti1(B) and George A. Papadopoulos2

1 School of Electrical and Computer Engineering,
National Technical University of Athens,

9 Heroon Polytechneiou Street, Zografou Campus, 157 80 Athens, Greece
eirinikoilanioti@mail.ntua.gr

2 Department of Computer Science, University of Cyprus, 1 University Avenue,
Aglantzia, 2109 Nicosia, Cyprus

george@ucy.ac.cy

Abstract. Contact tracing has built into a cost-effective social tool,
complementary for the prevention and containment of the coronavirus
and similar pandemics. Especially these days that meningitis, influenza,
but also streptococcus and respiratory syncytial virus (RSV) are on the
rise and affect vulnerable populations, e.g. young children, whose immune
system is unprepared due to lack of exposure to common viruses dur-
ing the recent pandemic, contact tracing apps can be used to detect
behavioural trends of the users and contribute to outbreak management.
This work suggests a comprehensive framework for the identification of
malware within contact tracing applications, leveraging deep learning
technology, and experimentally corroborates its efficiency. We also intro-
duce a safe and efficient retrieval mechanism for apps associated with
the Sustainable Development Goal (SDG) 3 associated with communica-
ble diseases. We aspire to contribute to the safe dissemination of tracing
apps in the era of contagious viruses.

Keywords: contact tracing app · security · social · malware ·
sustainable

1 Introduction

Contact tracing has evolved into a cost-effective tool for the prevention and con-
tainment of the coronavirus and similar contagious viruses [1] and their uptake
should increase. The prevailing apps are examined thoroughly especially these
days that meningitis, influenza, streptococcus and respiratory syncytial virus
(RSV) are on the rise and affect vulnerable populations. This work describes
up-to-date architectures and protocols of a plethora of current innovative appli-
cations for monitoring of contagious diseases, introduced by official governed
entities and private companies. These apps include diagnostic apps, contact
tracing apps and certificate checkers [2,3] for COVID-19. In this direction, sev-
eral communication technologies that support these systems, such as Bluetooth,
GPS, quick response codes, and Zigbee, prove to be efficient for contact tracing
systems [4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. T. Nguyen et al. (Eds.): ICCCI 2024, LNAI 14811, pp. 137–150, 2024.
https://doi.org/10.1007/978-3-031-70819-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70819-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-70819-0_11

138 I. Kilanioti and G. A. Papadopoulos

Contact tracing comprises essentially the identification process of those who
may have encountered an infected individual. It is one of the major non-
pharmaceutical public health intervention strategies, that include social distanc-
ing, isolation, and quarantining in response to emerging outbreaks. Covid trac-
ing apps are mobile software applications used for digital contact tracing. Aside
from identifying potential infections, apps serve for the subsequent gathering of
further details regarding such contacts aiming to stop virus spread [5]. Techni-
cally, there exist variations, i.e., centralized vs decentralized deployments, with
their accompanying sensing technologies, i.e., GPS combined with QR code scan-
ners and big data processing as well as wireless Bluetooth devices supported by
millimetre-wave and microwave communications [6]. In centralized contact trac-
ing a central server undertakes storage of user information and notifies users of
infectious encounters, while in decentralized deployments each smartphone user
shares solely the information of infected users with centralized server. The device
regularly downloads the contact list from servers to perform contact matching
locally and notify users of exposure to the virus.

Malicious tactics involve phishing attempts (app developers and knowledge-
able users could decipher the identity of those who have been exposed to the
virus), ransomware attacks, suggestions for fraudulent donations, etc. The num-
ber of such attempts has risen the last years, mainly due to the increase of peo-
ple affected globally by the pandemic. Virus scanners are not always effective
at detecting new and emerging malware, because they rely on known signatures
and patterns of previously identified malware to detect and label new malware
[7].

This work describes briefly up-to-date current architectures and protocols of
COVID19-tracing apps and emphasizes on a simple and efficient malware detec-
tion scheme among them. We introduce a comprehensive framework for the
identification of malware within contact tracing applications, leveraging deep
learning technology. Furthermore, we incorporate an associated data retrieval
model designed to ensure the secure and efficient storage of users’ information
and aspire to align our research with the United Nations Sustainable Develop-
ment Goal SDG3 [8]. The deep learning-based scheme uses text classification
as a complementary technique to virus scanners, and can be useful in detecting
new and emerging malware, as well as other types of malicious content.

Text classification can help to fill this gap by identifying suspicious patterns
and anomalies in the text of an application that may indicate the presence of
malware [9]. It can be useful in cases where malware has managed to bypass the
virus scanner and has been installed on a device. In such cases, text classification
can help to identify the malware and mitigate its impact. The apps are charac-
terized by a wide spectrum of functionalities and accompanying text description
that spans from offering useful instructions to notifying users if they have been
exposed to the virus.

Section 1 introduces the problem and describes our motivation. Section 2
briefly explains the mechanism of contact tracing frameworks, existent deficien-
cies and our contributions. Section 3 describes the methodology and the experi-

Malware Detection Among Contact Tracing Apps with Deep Learning 139

mental setup we used to construct and test a comprehensive framework for the
identification of malware within contact tracing applications, and Sect. 5 dis-
cusses the results. Furthermore, Sect. 4 incorporates an associated data retrieval
model designed to ensure the secure and efficient storage of users’ information
on decentralized apps and aspires to align our research with the United Nations
Sustainable Development Goal SDG3. Finally, Sect. 6 concludes the paper.

2 Related Work

Contact tracing [2,3] has been studied as a fundamental cost-effective comple-
mentary approach for virus containment [1]. Centralized apps mostly leverage
Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) protocol (e.g.,
TousAntiCovid, Stop Covid Georgia), BlueTrace/OpenTrace (e..g, COVIDSafe,
TraceTogether, careFIJI), and NHS contact tracing protocol (e.g., NHS Covid
app, integration of digital contact tracing app with public health programmes
and interventions). Decentralized protocols include Google/Apple privacy-
preserving tracing (e.g., Stopp Corona, COVID Alert, eRouška, Smittestopp
Norway, Smittestop, ASI, Koronavilkku, Corona-Warn-App, Radar COVID),
Decentralized Privacy-Preserving Proximity Tracing (DP-3T) (e.g., SwissCovid,
HOIA Estonia), TCN Protocol (e.g., NOVID, coEpi, Covid Community Alert),
Whisper Tracing Protocol (e.g., Coalition App), Privacy Automated Contact
Tracing (East Coast PACT), and Privacy-Sensitive Protocols for Contact Trac-
ing (West Coast PACT) (e.g., CovidSafe). Despite the decrease of the apps’
diffusion, policymakers should heed the evidence to leverage this transformative
tool and contain outbreaks in the future [10].

Malware detection of generic android apps has been studied with methods
based on: system-level data [11,12], API functions calls [13], machine learning of
dynamically generated data [14], etc. Malicious tactics among existent contact
tracing apps include phishing attempts (app developers and knowledgeable users
could decipher the identity of those who have been exposed to the virus, and
certain apps collect specific user data, e.g., postcode, for outbreak management
reasons), ransomware attacks, suggestions for fraudulent donations, etc. The
number of such attempts has risen the last years, due to the increase of people
affected globally by the pandemic [15,16].

Virus scanners are not always effective at detecting new and emerging mal-
ware, because they rely on known signatures and patterns of previously identified
malware to detect and label new malware [7,17,18]. This work introduces a sim-
ple and efficient malware detection scheme among contact tracing apps. The
scheme uses text classification as a complementary technique to virus scanners,
and can be useful in detecting new and emerging malware, as well as other types
of malicious content. Text classification can help to fill this gap by identifying
suspicious patterns and anomalies in the text of an application that may indicate
the presence of malware. It can be useful in cases where malware has managed
to bypass the virus scanner and has been installed on a device. In such cases,
text classification can help to identify the malware and mitigate its impact.

140 I. Kilanioti and G. A. Papadopoulos

In our work we aim to detect malware among existent COVID-19 tracing
apps and for this purpose we examine a publicly released dataset with multiple
COVID-19 themed APK samples, we conduct a grouping of the apps based on
how many Anti-Viruses detected that the apps belong to malware and augment
the dataset with new features that can then be used in conjunction with existent
features to further understand the distribution and characteristics of potentially
malicious apps. This research paper introduces a comprehensive framework for
the identification of malware within contact tracing applications, leveraging deep
learning technology. Furthermore, it incorporates an associated data retrieval
model designed to ensure the secure and efficient storage of users’ information
and aspires to align its research with the United Nations Sustainable Develop-
ment Goal SDG3.

3 Malware Detection

3.1 Experimental Setup

In this work we examined a publicly released dataset with 4,322 COVID-19
themed Android Package Kit (APK) samples, the format that incorporate all
files to install and distribute an application, with 2,500 different apps and 611
apps (370 unique malicious apps) belonging to potential malware considered
to be malicious [15]. The majority of malicious apps appeared as benign apps
using the same app identifiers (e.g., app name, package name and app icon).
The authors studied malware developers’ characteristics (habitual developers/
newcomers, location), malware installation methods and malicious behaviours
(private information extraction, phishing for the purpose of profit).

We conduct a grouping of the apps based on how many Anti-Viruses detected
that the apps belong to malware (Table 1) (https://github.com/GithubIrene00/
Transformers Covid19Apps). VirusTotal malware scanning service aggregating
over 60 anti-virus(AV) engines was used to scan the apk files. Given that AV-
Rank represents the number of Anti-Viruses that have detected a virus on a
particular app, it can serve as an indicator of the app’s potential malware status.
In order to further analyze this information, we create a new column in the
existent dataset that categorizes apps based on their AV-Rank, where a value
of “malware” is assigned to apps with an AV-Rank of 1 or greater, and “non-
malware” is assigned to apps with an AV-Rank of 0. This new column can then
be used in conjunction with other columns such as release date and app name to
further understand the distribution and characteristics of potentially malicious
apps.

https://github.com/GithubIrene00/Transformers_Covid19Apps
https://github.com/GithubIrene00/Transformers_Covid19Apps

Malware Detection Among Contact Tracing Apps with Deep Learning 141

Table 1. Grouping of apps based on how many Anti-Viruses detected these apps as
malware

Key Value

Group A: 0–10 54%

Group B: 11–20 24%

Group C: 20 or greater 22%

Fig. 1. Transformer architecture for COVID-19 tracing app description, implemented
with 12 stacked transformer layers and consisting of token, position and segment
embeddings.

The augmented dataset (https://github.com/GithubIrene00/Transformers
Covid19Apps) provides valuable insights into the distribution of COVID-19
related apps that circulate in the internet. We notice that a significant num-
ber of apps were released in April and May, and that most of the apps had an
AV-Rank of 0, indicating that they were not detected as malware by any anti-
virus software. However, a small number of apps had a high AV-Rank, indicating
that they were detected as malware by multiple anti-virus software. Addition-
ally, the version and APK size of an app did not have a significant impact on
whether or not it was detected as malware. Overall, this dataset highlights the
importance of being cautious when downloading apps related to COVID-19 and
checking their AV-Rank before installing them.

The augmented dataset contains 3073 features. Each sample comprises cru-
cial details about the app, such as the app name, package name, AV-Rank, ver-
sion, and APK size. Additionally, every entry has a unique MD5 and SHA256
hash to differentiate between the various apps in the dataset.

3.2 Transformer-Based Model

Transformer models achieve fast training and inference due to their parallel pro-
cessing capability and they encompass all kinds of noise. The BERT architecture
is a bidirectional transformer-based model that has been pre-trained on a mas-
sive amount of text data. The BERT model is made up of an encoder stack of
transformer blocks. Each transformer block has two sub-layers, a self-attention
layer and a feedforward neural network layer. The self-attention layer computes
the attention weights for each token in the input sequence, which are then used
to compute a weighted sum of the embeddings for all tokens. The feedforward
neural network layer applies a linear transformation and a non-linear activation

https://github.com/GithubIrene00/Transformers_Covid19Apps
https://github.com/GithubIrene00/Transformers_Covid19Apps

142 I. Kilanioti and G. A. Papadopoulos

function to the output of the self-attention layer. Figure 1 depicts the transformer
architecture for contact tracing app description with 12 stacked transformer lay-
ers and token, position and segment embeddings.

3.3 Data Splitting

To facilitate the process of training and validating the machine learning model,
the data was split into three sets. The first split was between X train, X test,
y train, and y test, where the test size was 20%, and the random state was set
to 42 for reproducibility. Next, X train and y train were further divided into
X train, X val, y train, and y val, with a validation set size of 20%. This split is
essential to train the machine learning model on the training set, optimize the
model’s hyperparameters on the validation set, and eventually test the model’s
performance on the test set.

3.4 Methodology

We conduct an experiment based on a transformer-based model. Character tok-
enizer breaks down text into individual characters, rather than words or sub-
words. This method of tokenization is often used in natural language processing
tasks where the focus is on understanding the structure of individual characters
in a text rather than the meaning of words or phrases. For this purpose we use
BertTokenizer. We use an existent dataset of apps and their package names,
along with the label indicating whether they are malware or not. We preprocess
the data to clean and format it in a way that can be fed into the transformer.
We split the data into training, validation, and test sets to estimate model’s
generalization performance by evaluating it on unknown test data. Splitting also
enables the tuning of model’s hyperparameters with the help of validation set
without affecting test set.

Afterwards we tokenize the package names in the train, test, and validation
sets into individual words or subwords, so that they can be passed as input to the
transformer. We create a custom PyTorch dataset called PackageNameDataset
for training, validation, and test sets. The dataset takes in two inputs, tokens and
labels, and has two methods, len and getitem, that are required by the PyTorch
Dataset class. Finally, we create DataLoader for each dataset with batch size of
16 and sets shuffle to false, which will be used to train, validate, and test the
model.

As a transformer-based model we used BertForSequenceClassification archi-
tecture from transformers package. Some weights of the model checkpoint at
bert-base-uncased were not used, as it is expected, and we train this model on
a down-stream task to be able to use it for predictions and inference.

Concerning implementation of other models to compare with, there follow
the steps:

– Data Preprocessing: The dataset consisted of the “Package Name” column as
the input feature (X) and the “malware” column with binary values (0 or 1)
as the target variable (y). The “Package Name” column was encoded using

Malware Detection Among Contact Tracing Apps with Deep Learning 143

the One Hot Encoder technique to convert categorical data into a numerical
format suitable for SVM training.

– Model Training: A Support Vector Machine (SVM) model, with a linear kernel
and a regularization parameter (C) of 1, that is effective with limited training
samples as well, was selected for training. The SVM model was trained using
the encoded features (X) and the target variable (y).

– Results: The recall, which measures the proportion of true positive predictions
out of all actual positive instances, was calculated.

Fig. 2. Suggested knowledge graph-based framework for efficient content similarity
search of SDG3 data consisting of i) semantic representation of data, ii) a substrate of
the network topology, where the indexing area is divided into semantically homogeneous
areas through HSFCs, iii) SDMX-standardized code equivalents of data entries, iv)
mapping to SDG ontology, when applicable.

4 A Safe and Efficient Storage Scheme Based on SDG3
Data About Communicable Diseases

The combined framework presented here can be utilised on a long term basis
to support the secure and efficient contact tracing in the realm of the medical
world.

144 I. Kilanioti and G. A. Papadopoulos

Sustainable Development Goals (SDGs) [8] were established by the United
Nations (UN) in the framework of the UN 2030 Agenda as a measurable interna-
tional initiative to safeguard the future for the next generations by maintaining
social welfare [19,20], [21]. SDG data consists of sustainable development goals,
targets, indicators and data series for the quantification of their accomplishment
[22] and, especially, SDG3 aims to ensure healthy lives and safeguard well-being.
Particularly, target 3.3 refers to containment of communicable diseases.

Hilbert approximations for multidimensional data result in more efficient
maintenance of local features as opposed to that achieved by linear ordering [19].
The next order Hilbert Space Filling (HSFC) curve comprises of four gyrated
reiterations of the previous order curve. In the next repetition, quadrants are
split up into four sub-quadrants each and so on. The line is repetitively folded
in such a way that passes by successive neighboring points without intersecting
itself and with infinite iterations of the curve construction algorithm it will not
omit any point on a continuous plane. HSFCs are always bounded by the unit
square, with Euclidean length exponentially growing with τ . Continuity of the
curve ensures that affinity of bins on the unit interval signifies affinity in the
unit square as well. Two points (x1, y1) and (x2, y2) with affinity in HSFC of
order τ1 depict affinity in HSFC of order τ2 >τ1 as well.

The first layer of the suggested distributed knowledge graph store (Fig. 2)
will entail semantic representation of data. In the next layer of Fig. 2, which
acts as a substrate of the network topology, we split up the indexing area in
semantically homogeneous areas through dimensionality reducing Hilbert Space
Filling Curves (HSFC). Use of curves in this building block proves beneficial for
preserving the neighbourhood property of concepts expressed by the indicators
of an SDG3 target, as semantically related terms, more probable to respond to a
user query, will be placed in the vicinity. In our suggestion linearization is imple-
mented as an overlay upon existing two-dimensional search structures and the
distributed file system, that ensures distribution and sharding that scale. Mul-
tidimensional queries upon the distributed knowledge graph can be mapped to
two-dimensional queries, that range from the minimum to maximum lineariza-
tion points of the initial query.

Retrieval of SDG3 Data on Communicable Diseases. The algorithm for match-
ing k-semantically closest indicators is based on multi-step filtering and refine-
ment, that consecutively removes irrelevant results and narrows the candidate
set (Algorithm 1). In order to optimally calculate distances, we use the algo-
rithm proposed in [23], that performs optimally as far as the number of distance
calculations is concerned, and modify it for HSFC representation. We create a
ranking by means of the lower bound lδH , that for all objects o1, o2 ensures that
lδH(o1, o2) ≤ δH(o1, o2) for a distance function δH among HSFC projections.
Reranking takes place provided that the lower bound does nor surpass the kth-
nearest neighbor distance and the results are updated with objects of smaller
distances [21].

Malware Detection Among Contact Tracing Apps with Deep Learning 145

Algorithm 1. Algorithm for safe filtering of similarity search results among
SDG3 data from decentralized contact tracing apps
Input: app id, k, query q, distances lδH , δH

Output: result set S
Parameters: indicator, T=(x,y) ∈ N , Hilbert Space F illing Curve
HSFC

1: S ← ∅
2: RH ← ranking(q, lδH)
3: ε ← next value ∈ RH

4: while lδH (q, ε) ≤ maxα∈SδH(q, α) and Transformers(app id) >
threshold value do

5: if |S| < k then
6: S ← S ∪ ε
7: else
8: if δH(q, ε) ≤ maxα∈SδH(q, α) then
9: S ← S ∪ ε

10: S ← S-argmaxα∈SδH(q, α)
11: end if
12: end if
13: ε ← next value ∈ RH

14: end while
end

15: return S

The process of refining multi-dimensional data to answer a query of k-closest
semantically indicators after projecting on a HSFC is depicted in Fig. 3. After
having reduced dimensionality with application of HSFCs, the query for seman-
tically similar indicators for target data of SDG3 can be handled as a nearest
neighbor search and implemented with a multi-step filter-and-refine approach
[23,24] in an efficient way. The main idea is to filter at a later stage results falsely
retrieved at first stage. Creating a lower bound with a simple distance function
filters out initially irrelevant results, and in the next step evaluation of results
returned at the previous stage takes place with the use of the original distance
function. There are multiple properties describing each observation (data entry)
and their Statistical Data and Metadata eXchange (SDMX)-standardized code
equivalents are also provided. Dimensions (standard demographic info, the whole
variety of different age profiles, etc.), time periods and area codes, described
through the UNM49 standard are available in the dataset for each indicator
from 2000 onwards [21].

146 I. Kilanioti and G. A. Papadopoulos

Fig. 3. Process of refining SDG3 multi-dimensional data from decentralized contact
tracing apps to answer a query of k-closest semantically indicators after projecting on
a HSFC. After having reduced dimensionality (standard demographic info, the whole
variety of different age profiles (AP), etc.), time periods and area codes, described
through the UNM49 standard) with application of HSFCs, the query for semantically
similar indicators can be handled as a nearest neighbor search and implemented with a
multi-step filter-and-refine approach for target data of SDG3. Creating a lower bound
with a simple distance function filters out initially irrelevant results, and in the next
step evaluation of results returned at the previous stage takes place with the use of the
original distance function.

5 Results

We notice that transformer-based model performs with higher accuracy and
can help to detect and filter out malicious app content that poses a threat to
users, thereby improving user safety and security. It’s important to evaluate the
malware detection model on metrics such as precision, recall, F1-score, and ROC-
AUC score, as they provide a more comprehensive understanding of the model’s
performance. While a high recall is desirable in malware detection, it’s also
important to balance recall with precision. In malware analysis recall is the most
reliable and interpretable metric which measures the percentage of malicious
instances found by the model as explained earlier. However, for model selection,
ROC-AUC is recommended, as it evaluates malware classifer performance in
threshold-free manner.

Malware Detection Among Contact Tracing Apps with Deep Learning 147

Fig. 4. The model is performing well with an accuracy of 0.9020, precision of 0.72,
recall of 0.6809, f1-score of 0.6465, and AUC-ROC of 0.8082. The model depicts a
higher recall than SVM, NB.

The model is performing well with an accuracy of 0.9020, precision of 0.72,
recall of 0.6809, f1-score of 0.6465, and AUC-ROC of 0.8082 (Fig. 4). Using
SVM classification, we have achieved quite lower recall than using BERT. SVM
accuracy is 0.8978, precision is 0.6667, recall is 0.4468, f1-score is 0.5350 and
AUC-ROC 0.706. NB depicts values: accuracy 85.99, precision 46.94, recall 48.94,
f1-score 47.92 and AUC-ROC 70.27. In conclusion, the transformer-based model
depicts better balance than SVM and Naive Bayes. A larger dataset would show
the superiority of deep learning to an even greater extent. Despite of its small
size, the dataset still allows us to exploit additional information such as app
category.

Table 2. Comparison with the state-of-the-art malware detection solutions

security framework precision

Transformer-based model 72%

MobSF (OWASP) 47%

Flowdroid 40%

In general, an accuracy of 0.9020 is quite high and indicates that the model
is performing well in terms of correctly classifying the samples. A precision of
0.72 (Table 2) means that out of all the samples predicted as positive, 72%

148 I. Kilanioti and G. A. Papadopoulos

are actually positive (substantially better than existent security frameworks for
apps, e.g., suggested by OWASP MobSF [25] (47%) and FlowDroid [26] (40%)).
A recall of 0.6809 indicates that the model is correctly identifying 68% of the
positive samples. The f1-score is the harmonic mean of precision and recall and
provides an overall measure of the model’s performance on both metrics, with
a value of 0.6465 indicating a reasonable balance between precision and recall.
The AUC-ROC is 0.8082, substantially higher than other models.

The loss calculated during training is a measure of how well the model per-
forms at correctly predicting the labels for the input data. In general, as training
progresses, the loss should decrease, indicating that the model is becoming bet-
ter at making predictions. A lower loss value and higher accuracy value indicate
that the model is performing well also on the test set. Test loss: 0.4771, accuracy:
0.9139.

6 Conclusions

Contact tracing has built into a cost-effective social tool, complementary for the
prevention and containment of the coronavirus and similar pandemics. Espe-
cially these days that meningitis, influenza, streptococcus and respiratory syn-
cytial virus (RSV) are on the rise and affect vulnerable populations, e.g. young
children, whose immune system is unprepared due to lack of exposure to com-
mon viruses during the recent pandemic, contact tracing apps can be used to
detect behavioural trends of the users and contribute to outbreak management.

This work suggests a simple and effective transformer-based malware detec-
tion scheme for a plethora of current innovative and future contact tracing apps
introduced by official governed entities and private companies, and experimen-
tally corroborates its efficiency. We also propose a scheme for quick retrieval of
relevant data associated with SDG3 among existent decentralised and potential
future contact tracing apps, as semantic cohesion is preserved.

In conclusion, this paper presents a deep learning-based framework for mal-
ware identification within contact tracing apps and proves its efficiency through
experiments. Additionally, the study introduces a safe retrieval method for asso-
ciated apps’ data related to SDG3, aiming to ensure the safe distribution of
tracing apps amid frequent outbreaks of contagious viruses.

References

1. Hong, X., Han, Y., Wang, B.: Impacts of detection and contact tracing on the epi-
demic spread in time-varying networks. Appl. Math. Comput. 439, 127601 (2023).
https://www.sciencedirect.com/science/article/pii/S0096300322006749

2. Pozo-Martin, F., Beltran Sanchez, M.A., Müller, S.A., Diaconu, V., Weil, K.,
El Bcheraoui, C.: Comparative effectiveness of contact tracing interventions in
the context of the COVID-19 pandemic: a systematic review. Eur. J. Epidemiol.
38(3), 243–266 (2023)

3. Juneau, C.-E., Briand, A.-S., Collazzo, P., Siebert, U., Pueyo, T.: Effective contact
tracing for COVID-19: a systematic review. Glob. Epidemiol. 100103 (2023)

https://www.sciencedirect.com/science/article/pii/S0096300322006749

Malware Detection Among Contact Tracing Apps with Deep Learning 149

4. Li, J., Guo, X.: Global deployment mappings and challenges of contact-tracing
apps for COVID-19. Available at SSRN 3609516 (2020)

5. Raman, R., Achuthan, K., Vinuesa, R., Nedungadi, P.: COVIDtas COVID-19 trac-
ing app scale-an evaluation framework. Sustainability 13(5), 2912 (2021)

6. Kallel, A., Rekik, M., Khemakhem, M.: IoT-fog-cloud based architecture for smart
systems: prototypes of autism and COVID-19 monitoring systems. Softw. Pract.
Exp. 51(1), 91–116 (2021)

7. Sun, R., Wang, W., Xue, M., Tyson, G., Camtepe, S., Ranasinghe, D.C.: An
empirical assessment of global COVID-19 contact tracing applications. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp.
1085–1097 (2021)

8. UN: Sustainable development goals, September 2015. https://www.un.org/
sustainabledevelopment/sustainable-development-goals/

9. Gorment, N.Z., Selamat, A., Cheng, L.K., Krejcar, O.: Machine learning algorithm
for malware detection: taxonomy, current challenges and future directions. IEEE
Access (2023)

10. Salathé, M.: COVID-19 digital contact tracing worked-heed the lessons for future
pandemics. Nature 619(7968), 31–33 (2023)

11. Feng, P., Ma, J., Sun, C., Xu, X., Ma, Y.: A novel dynamic android malware
detection system with ensemble learning. IEEE Access 6, 30:996–31:011 (2018)

12. Razgallah, A., Khoury, R., Hallé, S., Khanmohammadi, K.: A survey of malware
detection in android apps: recommendations and perspectives for future research.
Comput. Sci. Rev. 39, 100358 (2021). https://www.sciencedirect.com/science/
article/pii/S1574013720304585

13. Khanmohammadi, K., Khoury, R., Hamou-Lhadj, A.: On the use of API calls for
detecting repackaged malware apps: Challenges and ideas. In: 2019 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW), pp.
116–117. IEEE (2019)

14. Wen, L., Yu, H.: An android malware detection system based on machine learning.
In: AIP Conference Proceedings, vol. 1864, no. 1. AIP Publishing (2017)

15. Wang, L., et al.: Beyond the virus: a first look at coronavirus-themed mobile mal-
ware. arXiv preprint arXiv:2005.14619 (2020)

16. Ho, K.K., Chiu, D.K., Sayama, K.L.: When privacy, distrust, and misinformation
cause worry about using COVID-19 contact-tracing apps. IEEE Internet Comput.
(2023)

17. Wen, H., Zhao, Q., Lin, Z., Xuan, D., Shroff, N.: A study of the privacy of COVID-
19 contact tracing apps. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N.
(eds.) SecureComm 2020. LNICST, vol. 335, pp. 297–317. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63086-7 17

18. Baumgärtner, L., et al.: Mind the gap: security & privacy risks of contact tracing
apps. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 458–467. IEEE (2020)

19. Kilanioti, I., Papadopoulos, G.A.: An efficient storage scheme for sustainable devel-
opment goals data over distributed knowledge graph stores. In: Proceedings of 16th
IEEE International Conference on Knowledge Graph (ICKG) ’22, Orlando, FL,
USA, November 2022. Best paper award

20. Kilanioti, I.: Teaching a serious game for the sustainable development goals in
the scratch programming tool. Eur. J. Eng. Technol. Res. Spec. Issue 14th Conf.
Inform. Educ. CIE, Nov 2022 7(7) (2022)

https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.sciencedirect.com/science/article/pii/S1574013720304585
https://www.sciencedirect.com/science/article/pii/S1574013720304585
http://arxiv.org/abs/2005.14619
https://doi.org/10.1007/978-3-030-63086-7_17

150 I. Kilanioti and G. A. Papadopoulos

21. Kilanioti, I., Papadopoulos, G.A.: A knowledge graph-based deep learning frame-
work for efficient content similarity search of sustainable development goals data.
Data Intell. 1–19 (2023). https://doi.org/10.1162/dint a 00206

22. UN: Global SDG indicator framework after 2022 refinement (2022). https://
unstats.un.org/sdgs/indicators/indicators-list/

23. Seidl, T., Kriegel, H.-P.: ‘Optimal multi-step k-nearest neighbor search. In: Pro-
ceedings of the 1998 ACM SIGMOD International Conference on Management of
Data, pp. 154–165 (1998)

24. Yu, C.: High-Dimensional Indexing: Transformational Approaches to High-
Dimensional Range and Similarity Searches. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45770-4

25. LaMalva, G., Schmeelk, S.: MobSF: mobile health care android applications
through the lens of open source static analysis. In: 2020 IEEE MIT Undergraduate
Research Technology Conference (URTC), pp. 1–4 (2020)

26. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. ACM SIGPLAN Not. 49(6), 259–269 (2014)

https://doi.org/10.1162/dint_a_00206
https://unstats.un.org/sdgs/indicators/indicators-list/
https://unstats.un.org/sdgs/indicators/indicators-list/
https://doi.org/10.1007/3-540-45770-4
https://doi.org/10.1007/3-540-45770-4

	Malware Detection Among Contact Tracing Apps with Deep Learning
	1 Introduction
	2 Related Work
	3 Malware Detection
	3.1 Experimental Setup
	3.2 Transformer-Based Model
	3.3 Data Splitting
	3.4 Methodology

	4 A Safe and Efficient Storage Scheme Based on SDG3 Data About Communicable Diseases
	5 Results
	6 Conclusions
	References

