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Abstract

The Frequency Assignment Problem (FAP) in radio networks is the problem of
assigning frequencies to transmitters exploiting frequency reuse while keeping signal
interference to acceptable levels. The FAP is usually modelled by variations of the
graph coloring problem. A Radiocoloring (RC) of a graph G(V, E) is an assignment
function Λ : V → IN such that |Λ(u) − Λ(v)| ≥ 2, when u, v are neighbors in G,
and |Λ(u) − Λ(v)| ≥ 1 when the distance of u, v in G is two. The discrete number
of frequencies used is called order and the range of frequencies used, span. The
optimization versions of the Radiocoloring Problem (RCP) are to minimize the
span (min span RCP) or the order (min order RCP).

In this paper, we deal with an interesting, yet not examined until now, variation
of the radiocoloring problem: that of satisfying frequency assignment requests which
exhibit some periodic behavior. In this case, the interference graph (modelling in-
terference between transmitters) is some (infinite) periodic graph. Infinite periodic
graphs usually model finite networks that accept periodic (in time, e.g. daily) re-
quests for frequency assignment. Alternatively, they can model very large networks
produced by the repetition of a small graph.

A periodic graph G is defined by an infinite two-way sequence of repetitions of the
same finite graph Gi(Vi, Ei). The edge set of G is derived by connecting the vertices
of each iteration Gi to some of the vertices of the next iteration Gi+1, the same for
all Gi. We focus on planar periodic graphs, because in many cases real networks are
planar and also because of their independent mathematical interest.

We give two basic results:

• We prove that the min span RCP is PSPACE-complete for periodic planar
graphs.
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• We provide an O(n(Δ(Gi) + σ)) time algorithm, (where |Vi| = n, Δ(Gi) is the
maximum degree of the graph Gi and σ is the number of edges connecting each
Gi to Gi+1), which obtains a radiocoloring of a periodic planar graph G that
approximates the minimum span within a ratio which tends to 5

3 as Δ(Gi) + σ
tends to infinity.

We remark that, any approximation algorithm for the min span RCP of a finite
planar graph G, that achieves a span of at most αΔ(G) + constant, for any α
and where Δ(G) is the maximum degree of G, can be used as a subroutine in our
algorithm to produce an approximation for min span RCP of asymptotic ratio α for
periodic planar graphs.

Key words: approximation algorithms, computational complexity, radio networks,
frequency assignment, coloring, periodic graphs.

1 Introduction, Previous Work and our Results

1.1 The Radiocoloring Problem

The Frequency Assignment Problem (FAP) in radio networks is a well-studied,
interesting and well motivated problem, aiming at assigning frequencies to
transmitters exploiting frequency reuse while keeping signal interference to
acceptable levels. The FAP is usually modeled by variations of the graph
coloring problem. The interference between transmitters is usually modelled
by the interference graph G(V,E), where the set V corresponds to the set of
transmitters and E represents distance constraints. The set of colors represents
the available frequencies. In addition, the color of each vertex in a particu-
lar assignment gets an integer value which has to satisfy certain inequalities
compared to the values of colors of nearby nodes in the interference graph
G (frequency-distance constraints). We here study an important variation of
FAP, called the Radiocoloring Problem (RCP).

Consider a graph G(V,E). Let d(u, v) is the distance between u and v in G,
Δ(G) the maximum degree of the graph G and n = |V |.

1 Most of this work was done while the first author was at the Computer Tech-
nology Institute, Patras, Greece, and the Max-Planck-Institute für Informatik,
Saarbrücken, Germany
2 This research is partially supported by the European Union Fifth Framework
Programme Projects ALCOM-FT and ARACNE.
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Definition 1 Radiocoloring Problem(RCP)(8): Given a graph G(V,E),
a Radiocoloring (RC) is a function Λ : V → N∗ assigning integers (colors) to
the vertices of G such that |Λ(u)−Λ(v)| ≥ 2 if d(u, v) = 1 and |Λ(u)−Λ(v)| ≥
1 if d(u, v) = 2. The problem of finding such an assignment is called the
Radiocoloring Problem (RCP).

Two important parameters of a radiocoloring are the following:

Definition 2 order: The number of distinct colors used in a radiocoloring
assignment Λ of G is called the order of the assignment Λ.

Definition 3 span: The number ν = maxv∈V Λ(v)−minu∈V Λ(u)+1 used in
a radiocoloring assignment Λ is called the span of the assignment Λ.

The optimization versions of the RCP corresponding to these parameters are
the following:

Definition 4 min span RCP: Given a graph G, find a radiocoloring assign-
ment of G of minimum span, denoted by λspan(G).

Definition 5 min order RCP: Given a graph G, find a radiocoloring as-
signment of G of minimum order, denoted by λorder(G).

Note that both versions of the RCP have been proved to be NP -hard even
for planar and other restricted families of graphs ((9; 23; 3)).

1.2 The Periodic Planar Radiocoloring Problem

In this work we investigate the radiocoloring problem for an interesting fam-
ily of infinite planar graphs, called periodic planar graphs. A periodic graph
G is defined by an infinite sequence of repetitions of the same finite graph
Gi(Vi, Ei). The edge set of G is derived by connecting the vertices of each
iteration Gi to some of the vertices of the next iteration Gi+1, the same for all
iterations. We call this problem the periodic planar radiocoloring problem.

Infinite periodic graphs usually represent finite networks that accept periodic
(in time, e.g. daily) requests for frequency assignment. We note that periodic
interference graphs usually represent networks of great practical interest, since
in many networks the requests for frequency assignment exhibit some periodic
behavior. That is, the network accepts periodic (e.g. daily) requests for fre-
quency assignment. Each request has a starting and ending time and a node
where it is applied. Two requests interfere if they apply for nearby nodes and
their time intervals overlap. The assignment should be such that there is no
time overlap between any two nearby requests of the same or the preceding
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and following periods of requests. Alternatively, infinite periodic graphs can
model very large networks produced by the repetition of a small graph. Note
in this context that many real networks consist of the repetition of the same
component. We focus on planar periodic graphs, because in many cases real
networks are planar and because of the independent mathematical interest of
this family of graphs.

Definition 6 Linear Periodic Planar Graph G: A linear periodic planar
graph is defined as follows:

Let G̃ be an arbitrary finite connected planar graph. Let V the vertex set of G̃.
Let also E0 be the edge set of G̃. Let E+ be a specific set of ordered pairs (u, v)
of the nodes of G̃. Note that E+ must be a set of ordered pairs of vertices whose
connection according to the rule (c2) below leads to planarity preservation.

Consider the two-way infinite sequence of graphs . . . , Gi, Gi+1, . . ., where each
Gi is isomorphic to G̃. The infinite graph G is obtained from this sequence as
follows:

(a) We assume a line (in fact, any 1-dimensional infinite simple curve) on
which we select discrete points . . . , i, i + 1, i + 2, . . . , such that:

(a1) Each point in the line is replaced by G̃.
(a2) Each edge (i, i + 1) in the line is replaced by E+.
(a3) For any finite subset of consecutive points in the line, replacing the
points of the line by graphs G̃ end the edges between them by E+, the
resulting graph is planar.

(b) The vertex set of G is the union of the vertex sets of the sequence
. . . , Gi, Gi+1, . . ..
(c) The edges of G are (c1) The edge set of each Gi (i.e., the edge set E0

of G̃) (c2) For each pair of adjacent copies of G̃, call them Gi, Gi+1, we
use the E+ specification of G to connect the nodes of Gi corresponding to
the first elements of the pairs in E+ to the nodes of Gi+1, corresponding to
the second elements of the pairs in E+.

We denote a linear periodic planar graph by G = (G̃(V,E0), E+).

We note the similarity of linear periodic graphs to 1-dimensional periodic
graphs defined in the work of (17).

Definition 7 (G̃, E+): The pair (G̃, E+) is called the finite specification of
G.

Note that there can be infinite periodic graphs which are not linear; consider
the periodic graph whose graph G̃ in its finite specification, is a cycle con-
necting vertices a, b, c, d, and E+ = {(a, a), (b, b), (c, c), (d, d)}, illustrated in
Figure 1. This graph is not a linear periodic planar graph, because there is no
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line of discrete points such that (i) each point in the line can be replaced by
G̃ and (ii) each of its edges can be replaced by E+ leading to planarity.

Fig. 1. This graph is not a linear periodic planar graph.

Note 1 All our results refer to linear periodic planar graphs, which we call
periodic planar graphs in the sequel.

1.3 Our results

In this work we provide the following results:

1. We first prove that the min span radiocoloring problem is PSPACE-
complete for periodic planar graphs. (The space is polynomial with respect
to the size of the finite specification (G̃, E+.)
2. We provide an O(n(Δ(Gi) + σ)) time algorithm, (where |Vi| = n,
Δ(Gi) is the maximum degree of the graph Gi and σ is the number of
edges connecting Gi to Gi+1), which obtains a radiocoloring of a periodic
planar graph G that approximates the minimum span within a ratio which
tends to 5

3
as Δ(Gi) + σ tends to infinity.

We remark that, any approximation algorithm for the min span RCP of
a finite planar graph G, that achieves a span of at most αΔ(G)+constant,
for any α and where Δ(G) is the maximum degree of G, can be used as
a subroutine in our algorithm to produce an approximation for min span
periodic planar RCP of asymptotic ratio α for periodic planar graphs.
Note also that, the same algorithmic approach can be applied to obtain
a radiocoloring assignment that approximates the minimum order within
a ratio which tends to 5

3
as well, as we show in (11).

Our results provide yet another natural PSPACE-complete problem whose
optimization version is shown here to admit a polynomial time constant ratio
approximation. This answers partially an interesting open question in Condon
et al (6).
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1.4 Previous Work

Several practical variations of FAP have been studied in the past for some
useful families of graphs, e.g. (12; 8; 19; 3). Both versions of RCP, minimizing
the span or the order, have proved to be NP -complete, even for the case of
planar graphs, see (3; 9) and (23), respectively.

As it concerns the approximability of the problem, for min order RCP, in (9)
a 2-approximation algorithm was presented for the case of planar graphs. This
result was next improved in (2), providing a 9

5
-approximation for planar graphs

of Δ(G) ≥ 749. These results were further improved in (19), providing a 5
3
-

approximation algorithm for the problem. For min span RCP on planar graphs,
the latest result is also applicable here, obtaining the same approximation.

Actually, in (19), the authors provide upper bounds (which imply polyno-
mial time approximation algorithms) for a more general problem called λp,q-
labeling. In the λp,q-labeling problem, we seek to find an assignment of integers
to the vertices of the graph so that any vertices of distance 2 get integers that
differ by at least p and any two vertices of distance 1 get integers that differ
by at least q. The objective of the assignment is to minimize the span. Note
that λp,q-labeling is equivalent to min span RCP when p = 2 and q = 1.
Variations of λp,q-labeling for p = 2, 1 and p = 0, 1, 2 have been considered in
(3) and more recently in (1), providing approximations for some interesting
families of graphs, such as outerplanar graphs, graphs of bounded treewidth,
permutation and split graphs.

A model for periodic graphs (called l-dimensional periodic graphs) was first
presented by Orlin in (21). The model of periodic graphs considered in this
work is similar to that of Orlin for the 1-dimensional case, l = 1 (also called 1-
dimensional periodically specified graphs or simply periodically specified graphs),
when restricted to planar instances.

The complexity of various basic problems of periodically specified graphs was
studied by Orlin (21) and Wanke (26). In (21; 18; 25) it is proved that the
problems of Maximum Independent Set (MIS), Hamiltonial Path, Partition
into Triangles, SAT, 3-coloring for periodically specified graphs are PSPACE-
complete. The appoximability of basic problems on infinite periodic graphs
was studied by several researchers ((5; 13; 22)) giving efficient algorithms for
solving problems such as determining strongly connected components, testing
the existence of cycles, bipartiteness, planarity and minimum cost spanning
forests for periodically specified graphs.

Marathe et al, in (17), presented several PSPACE-hardness results and also
efficient approximation schemes for general classes of both hierarchically and
periodically specified problems. However, we remark that the general frame-

6



work of Marathe et al (17) does not cover the PSPACE-completeness of
min span RCP of periodic planar graphs. This is so because the methodol-
ogy of the periodic 3-SAT variation used in (17) does not trivially transfer to
the 3-coloring of periodic planar graphs which we use in our reduction (see
their Theorem 6.5). Also, their approximation technique for periodically spec-
ified graphs (illustrated for the Maximum Independent Set problem) takes the
union of partial solutions-subsets of the infinite graph and thus it does not
consider all the vertices, which is not allowed in coloring problems.

1.5 Organization of the paper

We provide here an overview of the rest of this paper. In Section 2 we provide
a useful Lemma about the structure of a linear periodic planar graph. In
section 3 we give the PSPACE-completeness proof of min span radiocoloring
for periodic planar graphs. In Section 4we present an efficient approximation
algorithm for min span periodic planar radiocoloring. Finally, we discuss open
problems and possible further research.

2 Embeddings of Periodic Planar Graphs

In this paper, we use the notion of an embedding of a planar graph.

Definition 8 Planar Embedding (of a periodic graph G)((20)): For
each node v of G, there is an adjacency list, such that all neighbours of v
appear in clockwise order with respect to an actual drawing of G.

The following Lemma reveals important information about the structure of a
linear periodic planar graph.

Definition 9 For a linear periodic planar graph G, given by the pair (G̃, E+),
the graph Extended G̃ is obtained by an iteration i of G, Gi (which is iso-
morphic to G̃) and the set of edges connecting Gi with the previous and next
iterations, sets Ei−, Ei+ (each of which is equal to E+).

Lemma 10 Any linear periodic planar graph G can be embedded in the plane
by interchanging at most two different planar embeddings of Extended G̃.

PROOF. Observe first that there are cases where we need to interchange two
different embeddings of the graph Extended G̃ in order to draw a linear peri-
odic planar graph preserving planarity. As an example, consider the periodic
graph whose graph G̃ in its finite specification is a single edge connecting two
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vertices a, b, and E+ = {(a, b), (b, a)}, illustrated in Figure 2. We will show

a b a b a b

embedding 1 embedding 2 embedding 1

Fig. 2. An example of a graph which needs two different embeddings of Extended
G̃ in order to be drawn in the plane without edge crossings.

that interchanging at most two different embeddings of the graph Extended
G̃ is enough to draw any linear periodic planar graph G preserving planarity.
In order to check whether it is possible that three embeddings to be required,
we need to consider any 3 consecutive iterations of G. Recall that different
embeddings may be introduced because of the connections between nodes of
consecutive iterations. Hence, only nodes of the exterior face of each iteration
will be involved. So, we can view the three consecutive iterations as three cy-
cles. Moreover, we can consider three simple lines, since less edges are involved
in the embeddings of consecutive iterations in the case of lines compared to
cycles. Finally, observe that, in order for three or more planar embeddings to
be needed, we have to consider at least 3 nodes of Gi, assume a, b, c. So, we can
consider a line consisting of nodes a, b, c, having edges ab, bc (denoted by L3).
We distinguish 6 different ‘drawings’ of a line L3 in the plane (see Figure 3).

a

b

c

c

b

a

b

c

a

a

c

b

b

a

c

b

c

a

i ii iii vi v vi

Fig. 3. The six possible embeddings of Line L3.

Note that some of them are equivalent embeddings with respect to definition
8 of a planar embedding. However, we consider all 6 of them since for an iter-
ation i each such drawing combined with sets of edges Ei− and Ei+ can result
in a distinct embedding of the graph Extended G̃. In our case the Extended
G̃ is the graph obtained by L3 of iteration i and a set of edges connecting L3

with the previous and next iterations, (sets Ei−, Ei+). In the following, we
use the term ‘drawing’ when we refer to any of these 6 drawings and the term
‘embedding’ when we refer to any of them together with an instance of sets
Ei− and Ei+.

To check whether three embeddings may be needed, we need to check all
possible triples of these drawings. For each such triple, we check all possible
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sets E+ that can lead to a linear periodic graph. For each such set, we show
that interchanging at most two of these six drawings in any two consecutive
iterations, is enough to draw the infinite graph in the plane. Recall that two
drawings (of consecutive iterations i and i+1) combined with the sets of edges
connecting each iteration with next and previous iterations (sets Ei−, Ei+ and
E(i+1)−, E(i+1)+) result in two different embeddings of the graph Extended G̃.

Henceforth, interchanging two different embeddings of the graph Extended G̃
we can draw the infinite periodic planar graph in the plane without crossings.

Assume iterations Gi, Gi+1, having nodes ai, bi, ci, and ai+1, bi+1, ci+1, respec-
tively. Observe that, in order for three embeddings to be required (a) set E+

should contain at least 3 edges between any two embeddings and (b) at least
one node of each pair of nodes ai, ai+1 , bi, bi+1 or ci, ci+1, should have degree
at least 1 in E+. By exhaustive check of all possible cases, we conclude that
in all cases, two embeddings are enough to draw the linear periodic graph in
the plane, without edge crossings.

As one case of all possible cases (the other cases are similar), we consider the
triple of drawings (i), (ii), (iii). For this triple, we check all possible sets of
E+ that lead to planarity. For each such set E+, we show that at most two
different embeddings of the graph Extended G̃ are enough to draw the infinite
graph in the plane. Observe first that there must not be an edge connecting
ci to any node of Gi+1, since this would eliminate the possibility of a third
embedding. Also, there must be an edge from some node of Gi to ci+1, since
otherwise, two embeddings of the graph Extended G̃ would be sufficient. Thus,
there are three possible cases for the set of edges between any two consecutive
iterations that preserve planarity.

A. There exists an edge (ai, ci+1). In this case, by planarity (the re-
sulting graph should be planar), it is not possible to have both edges
(ai, ai+1) and (bi, bi+1). Hence, the only cases remaining are to have edges
{(ai, bi+1), (bi, bi+1), (bi, ai+1)} or edges {(ai, bi+1), (ai, ai+1), (bi, ai + 1)}.
Both of them lead to a linear periodic planar graph by interchanging
drawings (i) and (ii). Obviously, for any other subset of those cases at
most two embeddings of the graph Extended G̃ are sufficient to preserve
the planarity of the periodic planar graph.
B. There exists an edge (bi, ci+1). In this case, by planarity (the re-
sulting graph should be planar), it is not possible to have both edges
(ai, bi+1) and (bi, ai+1). Hence, the only cases remaining are to have edges
{(ai, ai+1), (ai, bi+1), (bi, bi+1)} or edges {(ai, ai+1), (bi, ai+1), (bi, bi+1)}. Both
of them lead to a linear periodic planar graph by using drawing (ii). Ob-
viously, for any other subset of those cases at most two embeddings of the
graph Extended G̃ are sufficient to preserve the planarity of the periodic
planar graph.
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C. There exist both edges (ai, ci+1) and (bi, ci+1). In this case, by planarity
(the resulting graph should be planar), the only possible extra edges are
the following sets:
(-) {(ai, bi+1), (ai, ai+1)}. Then we can use drawing (i).
(-) {(bi, bi +1), (bi, ai+1)}. Then we can interchange drawings (i) and (ii).
(-) {(ai, ai+1), (bi, bi+1)}. Then we can use drawings (iii).

By planarity, any other supersets of those cases are not possible. For
any other subset of those cases at most two embeddings of the graph
Extended G̃ are sufficient. For the rest possible triples of drawings we get
similar results. See (10) for verification of the Lemma through a computer
program that checks all possible cases.

�

Lemma 11 Assume that we construct an infinite graph as in Definition 6
except that instead of (a3) we have that for any three consecutive points of the
line, replacing each point by graph G̃ and the edges among consecutive points
by E+, the resulting graph is planar. Then, the infinite graph thus constructed
is a linear periodic planar graph.

PROOF. The above requirement implies (a3) of Definition 6 because of
Lemma 10. To see why, observe that there are two possible ways to draw
a linear periodic planar graph: using the infinite sequence . . . , A,B,A, . . . or
. . . , B,A,B, . . . (where A, B are the two planar embeddings of G̃ needed). Our
assumption guarantees that the coexistence of AB and BA graphs (together
with E+) has a planar embedding. Thus, by induction, any longer string will
also have a planar embedding. �

We study the following optimization version of the periodic planar radiocol-
oring problem:

Definition 12 min span RCP for a periodic planar graph G: Given a
periodic planar graph G = (G̃(V,E0), E+), find a radiocoloring assignment of
minimum span for this graph. Denote this span by λspan(G).

Note that optimization problems defined on such infinite graphs tend to be
harder than the finite case (e.g. either PSPACE-hard or NEXPTIME-hard)
as noticed by (6; 7).
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3 The PSPACE-Completeness of min span RCP for Periodic Pla-
nar Graphs

We prove have that min span radiocoloring for periodic planar graphs is
PSPACE-complete. In order to show this, we need to prove that a number
of problems are PSPACE-complete. A 3-coloring of a periodic graph G =
(G̃(V,E0), E+) is a function c that assigns a number from the set {1, 2, 3} to
each vertex of the graph G so that not two adjacent vertices get the same
number. A 4-edge coloring of a periodic graph G is a function e that assigns
a number from the set {1, 2, 3, 4} to each edge of G so that no two adjacent
edges get same numbers.

Let any iteration Gi(Vi, Ei) of G and let Ei+ the set of edges connecting any
iteration Gi to the next iteration Gi+1. A constant period 4-edge coloring of a
periodic graph G is a 4-edge coloring of G that assigns to each edge uv of Ei

of any iteration Gi the same color as the color assigned to the corresponding
edge u′v′ of any other iteration Gj of G. Also, such a 4-edge coloring assigns to
each edge of Ei+ the same color as the color of the corresponding edge of Ej+

of any other iteration Gj. As a result, such a 4-edge coloring can be described
using finite space (using the 4-edge coloring of Gi and Ei+).

Lemma 13 The problem of deciding whether a periodic planar graph G =
(G̃(V,E0), E+) is 3-colorable (also called periodic planar 3-coloring) is PSPACE-
complete.

PROOF. (a) Membership in PSPACE: The proof that this problem is in
PSPACE is similar to that for the PERIODIC SAT, (25). Suppose that
the given periodic graph is 3-colorable, and consider a valid 3-coloring of it.
This assignment consists of a two-way infinite . . . , Ti, Ti+1, Ti+2, . . . of valid
3-coloring assignments to the various blocks of nodes (one for each iteration).
Each Ti is an element of {1, 2, 3}n, where n = |V | is the number of vertices of
the graph Gi.

The ith chunk, where i is any integer, is the pair (Ti, Ti+1), of two consecutive
valid 3-coloring assignments. Since there are 32n possible different chunks,
there must be two chunks, not further than 32n from each other, that are
identical. That is (Ti, Ti+1) = (Tj, Tj+1) for some i and j between i + 2 and
i+32n. But this means that there is a 3-coloring assignment consisting of a two-
way infinite repetition of (Ti, Ti+1, . . . , Tj−1). We conclude that if a periodic
graph G is 3-colorable, then it has a periodic 3-coloring assignment with period
at most exponential in the number of nodes of one iteration. Using this crucial
observation, we can show that a polynomial-space machine can guess and
check any 3-coloring of the graph: using non-determinism we can guess valid
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assignments T1, T2, . . . , always remembering the last two. After we guess Ti

we check that all nodes in iteration i − 1 are still properly colored. Once we
have successfully guessed T32n+2 we accept: We know that there is a periodic
3-coloring assignment on G.

(b) The PSPACE-completeness proof: In order to show the completeness,
we reduce from 3-coloring of periodic general graphs, which is known to
be PSPACE-complete ((25)). We use the transformation used by (24) to
prove the NP -completeness of PLANAR-3-COLORING reducing it from 3-
COLORING. We describe it next:
Transformation: Consider any graph G. Construct a new planar graph G′

as follows: replace any edge-crossing of G with the gadget of Figure 4, where
H is a subgraph presented in the same Figure. The vertices of the subgraph
are named as shown in Figure 4.

H H H v

v

vu

u

u:

H H H
u v

end

end end

end end

end

originaloriginal

x

x'

y'y

The crossover H

Fig. 4. The Crossover H and the construction of a planar G′ from a given periodic
graph G, using the crossover H

Let any periodic graph G that we are asked whether it is 3-colorable. Consider
any iteration Gi(Vi, Ei) of the periodic graph G. Call the vertices of Gi (set
Vi), original vertices of Gi. Call the edges of Gi (set Ei) as inside edges of Gi.
Call the edges of set Ei+ as outside edges of Gi. Similarly, if a vertex in Vi

has no neighbour vertex in Vi+1, then the vertex is called inside vertex of Gi.
Otherwise, that is, when the vertex has a neighbour in Vi+1, call it outside
vertex of Gi.

From G, we construct a new graph G′ according to the following Procedure:
1. Apply the Transformation on the graph Gi.
2. Apply the Transformation on the subgraph of G obtained the edges con-
necting Gi to Gi+1 (set Ei+).

Consider now any outside edge of Gi. If there are no crossings on it, the edge
remains the same in G′. Such edges belong to a set called OutNoCrossEdgeGi

.
Otherwise, that is, when there are some crossings on the edge, the Procedure
replaces it by a sequence of crossovers (one for each crossing), as shown in
Figure 4. Call such gadgets, outside sequences of crossovers of Gi, denoted by
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Out SCGi
.

Consider any inside edge uv of Gi. If there are no crossings on it, the edge
remains the same in G′. Such edges belong to a set called InNoCrossEdgeGi

.
Otherwise, that is, when there are some crossings on the edge, the Procedure
replaces it by a sequence of crossovers (one for each crossing), as shown in
Figure 4. If none of its end vertices belongs to a crossover corresponding to an
outside edge of Gi−1, then call such a gadget, inside sequences of crossovers,
considering iteration Gi, denoted by In SCGi

.

Let now any inside edge of Gi+1. If there are no crossings on it, the edge re-
mains the same in G′. Otherwise, that is, when there are some crossings on
the edge, the Procedure replaces it by a sequence of crossovers (one for each
crossing), as shown in Figure 4. If at least one of its end vertices belongs to a
crossover corresponding to an outside edge of Gi, then call such a gadget inside
sequence of crossovers considering iteration Gi+1, denoted by In SCGi+1

. Fi-
nally, for any sequence of crossovers SC, defined above, let OrigSC the original
vertices of iteration Gi+1 contained in this sequence of crossovers SC.

Now define a graph G′
i(V

′
i , E

′
i) as follows:

V ′
i = Vi ∪ (V (Out SCGi

)−OrigOut SCGi
) ∪ V (In SCGi

) ∪ (V (In SCGi+1
)−

OrigIn SCGi+1
),

E ′
i = InNoCrossEdgeGi

∪ E(Out SCGi
− OrigOut SCGi

)) ∪ E(In SCGi
)

∪E(In SCGi+1
− OrigIn SCGi+1

).

Also define a set of pairs of nodes, called E ′
i+, as follows:

(v, u) ∈ E ′
i+ if vu ∈ Out SCGi

and u ∈ Vi+1,
(v, u) ∈ E ′

i+ if vu ∈ In SCGi+1
and u ∈ Vi+1,

(v, u) ∈ E ′
i+ if vu ∈ OutNoCrossEdgeGi

and u ∈ Vi+1.

Applying the Procedure for any other iteration Gj of G and the edges con-
necting Gj to Gj+1, we get the same graph G′

i(V
′
i , E

′
i) and set of pairs of nodes

E ′
i+. Thus, we can apply the Procedure for only one iteration of G. The result-

ing pair (G′
i, E

′
i+) defines a periodic graph given by G′ = (G′

i(V
′
i , E

′
i), E

′
i+) and

is obtained in polynomial time to the specification of the graph G. Observe
also that the Procedure eliminates all edge-crossings so the new graph is also
planar.

We next show that if the initial periodic graph G is 3-colorable, then the pe-
riodic planar G′ is also 3-colorable. Our reduction replaces each edge-crossing
of the periodic graph with the gadget of (24). In (24), it is shown that such
a replacement guarantees than the new graph obtained is 3-colorable if and
only if the original is 3-colorable. Thus, the statement holds for the new pe-
riodic graph G′ obtained by our reduction. This completes the PSPACE-
completeness proof. �
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Lemma 14 The problem of deciding whether a given periodic planar graph
G = (G̃(V,E0), E+) of maximal degree four is 3-colorable is PSPACE-complete.

PROOF. We prove that the problem is in PSPACE using arguments similar
to those used above to prove the membership of periodic planar 3-coloring in
the class PSPACE.

We reduce planar 3-coloring of a periodic graph with a maximum degree 4 from
periodic planar 3-coloring, which we proved that it is PSPACE-complete in
Lemma 13. We use the transformation used to prove the NP -completeness of
3-COLORING of a planar graph G with a maximum degree 4 in (24). That
reduction reduces the problem from the PLANAR-3-COLORING. Recall the
gadget used in (24):
Gadget: Consider a vertex substitute, called H3, shown in Figure 5. The
graph H3 has three “outlets” labeled 1, 2, 3. It is designed so that all of its
outlets should take the same color. Moreover, each outlet has degree 2. A
vertex of degree k in G is replaced by a subgraph Hk, which is defined by
k− 2 repetitions of the subgraph H3, as shown in Figure 5, for the case where
k = 5. In the subgraph Hk all of its outlets should be colored with the same
color and each of them is of degree 2.

(a)

1 3

2 2 3 4

5
1

(b)

Fig. 5. The subgraphs H3 (a) and H5 (b)

Let any periodic planar graph G of arbitrary maximum degree that we are
asked whether it is 3-colorable. We construct a new graph G′ of maximum
degree is 4 which we show that it is a periodic planar graph. Consider any
iteration Gi(Vi, Ei) of the periodic graph G. We replace the vertices of the
graph with the Gadget above, similar to (24), accordinh to the following Pro-
cedure:
1. Replace any vertex v of Gi of degree k by the subgraph Hkv .
2. Replace each edge (v, uj), with v, uj ∈ Vi, by an edge joining uj to the j-th
outlet of Hkv .
3. Replace each edge (v, uj), with v ∈ Vi but uj ∈ Vi+1, by an edge joining uj

to the j-th outlet of Hkv .

Define a graph G′
i(V

′
i , E

′
i) as follows:

∀u ∈ Vi : V (Hku) ⊆ V ′
i , ∀u ∈ Vi : E(Hku) ⊆ E ′

i and ∀(u, vj) ∈ Ei and u, vj ∈

14



Vi : (vj, j) ∈ Ei′ , where j is the j-th outlet of Hku and k is vertex’s u degree.
Also, define a set of pairs of nodes, called E ′

i+, of as follows: ∀(u, vj) ∈
Ei and u ∈ Vi but vj ∈ Vi+1 : (vj, j) ∈ E ′

i+ .

Applying the Procedure for any other iteration Gj of G and the edges con-
necting Gj to Gj+1, we get the same graph G′

i(V
′
i , E

′
i) and set of pairs of nodes

E ′
i+. Thus, we can apply the Procedure for only one iteration of G. The result-

ing pair (G′
i, E

′
i+) defines a periodic graph given by G′ = (G′

i(V
′
i , E

′
i), E

′
i+) and

is obtained in polynomial time to the specification of the graph G. Observe
also that the graph obtained by the Procedure is a periodic planar graph of
maximum degree 4.

We need to prove that if the initial periodic graph G is 3-colorable, then the
periodic planar G′ of maximum degree 4, is also 3-colorable. Our reduction
replaces each vertex of the periodic graph with the same gadgets as in (24).
In (24), it is shown that such a replacement guarantees than the new graph
obtained is 3-colorable if and only if the original is 3-colorable. Thus, the
statement holds for the new periodic graph G′ obtained by our reduction.
This completes the PSPACE-completeness proof. �

Lemma 15 The problem of 3-coloring a periodic planar graph with a given
constant period 4-edge coloring is PSPACE-complete.

PROOF. The membership in PSPACE can be shown using arguments sim-
ilar those used to prove the membership of 3-coloring of periodic graphs in
the class PSPACE of Lemma 13.

We use a transformation from the 3-coloring for planar periodic graphs with
maximum degree 4 which was proved to be PSPACE-complete in Lemma
3, similar to (24) used to show NP -completeness of 3-COLORING of planar
graphs with maximum degree 4. Consider any iteration Gi(Vi, Ei) of the peri-

*2 *3

*4*1

2

141

3 2 3
3

12

1 4

4

21 12

2 4 1 4

3 24 13
3 23

3
3 24

2 4 2 1 4 1

Fig. 6. The subgraph S

odic graph G. From G, we construct a periodic planar graph G′ according to
the following Procedure:
1. Replace every vertex u of Gi by a copy of the subgraph S, used in (24),

15



shown in Figure 6.
2. Consider any vertex u in Vi which is replaced in G′ by a subgraph S. We
replace each edge (u, v), with v ∈ Vi, incident to u with an edge joining v with
one of the four marked vertices (with an *i, for i = 1 . . . 4) in the subgraph S
such that the graph stays planar.
3. Similarly, we replace each edge (u, v), with u ∈ Vi but v ∈ Vi+1, incident to
u with an edge joining v with one of the four marked vertices in the subgraph
S (replacing u in G′) so that the graph stays planar.

Define now a graph G′
i(V

′
i , E

′
i) as follows:

∀u ∈ Vi : V (Su) ⊆ V ′
i , ∀ v ∈ Vi : E(Su) ⊆ E ′

i and ∀(u, vj) ∈ Ei and u, vj ∈
Vi : (vj, j) ∈ Ei′ , where j is the j-vertex marked as ∗j in Su.
Also define a set of pairs of nodes, called E ′

i+, of as follows: ∀(u, vj) ∈ Ei and u ∈
Vi but vj ∈ Vi+1 : (vj, j) ∈ E ′

i+.

Applying the Procedure for any other iteration Gj of G and the edges connect-
ing Gj to Gj+1, we get the same graph G′

i(V
′
i , E

′
i) and set of pairs of nodes E ′

i+.
Thus, we can apply the Procedure for only one iteration of G. The resulting
pair (G′

i, E
′
i+) defines a periodic graph given by G′ = (G′

i(V
′
i , E

′
i), E

′
i+) and is

obtained in polynomial time to the specification of the graph G.

Let G′ be the resulting periodic graph. An 4-edge coloring of G′ can be con-
structed by coloring the edges in the replacement subgraph S as in Figure 6,
and coloring the original edges of G (the dotted lines in Figure 6) by the fol-
lowing procedure: if e is an edge between two subgraphs, since both endpoints
have degree three and one edge is already colored with 1, there is at least one
color from { 2, 3, 4 } left for the edge.

We next prove that the 4-edge coloring of the periodic graph G′ can be con-
structed in time polynomial to the size of one iteration of G′. That is, to prove
that it is a constant period 4-edge coloring. To see why, consider any iteration
G′

i(V
′
i , E

′
i) of G′. The edge coloring procedure described above may apply to

produce a 4-edge coloring of edges of set E ′
i in time polynomial to n = |V ′

i |.
Now use the same edge-coloring assignment of E ′

i to edge-color the edge sets
E ′

j of each other iteration G′
j of the periodic graph G′. Observe, that this as-

signment results to no conflicts between successive iterations because none of
the edges of E ′

j is adjacent to an edge of E ′
(j+1). Consider next, the edges of set

Ei+ connecting some vertices of Gi to some vertices of Gi+1. The procedure
described above may apply to produce a 4-edge coloring of edges of set Ei+

in time polynomial to n = |V ′
i |. Now as before, use the same edge-coloring as-

signment of E ′
i+ to edge-color the edges of sets E ′

j+ of the each other iteration
G′

j of the periodic graph G′. Observe again that, this assignment results to
no conflicts between successive iterations because none of the edges of E ′

j+ is
adjacent to an edge of E ′

(j+1)+. Hence this is a constant period 4-edge coloring
G′ and thus it can be computed in time polynomial to the size the specification
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of G′.

Now, we prove that if the initial periodic planar graph G, with a given 4-edge
coloring is 3-colorable, then the periodic planar G′, is also 3-colorable and has
4-edge coloring. Our reduction replaces each vertex of the periodic graph with
the same gadgets as in (24). In (24), it is shown that such a replacement guar-
antees than the new graph obtained is 3-colorable if and only if the original is
3-colorable. Thus, the statement holds for the new periodic graph G′ obtained
by our reduction. This completes the PSPACE-completeness proof. �

Next, we prove the main Theorem using the above results. We prove that the
min span radiocoloring for periodic planar graphs is PSPACE-complete, by
transforming it from 3-coloring of periodic planar graphs.

Theorem 16 The problem of deciding whether a periodic planar graph G =
(G̃(V,E0), E+), of maximum degree seven, whose graph G̃ in its finite specifi-
cation (G̃, E+) is a planar bipartite graph, can be radiocolored using a span of
at most 9, is PSPACE-complete.

PROOF. (a) Membership in PSPACE: The proof that it is in PSPACE
is the same as for PERIODIC SAT, (25). Suppose that the given periodic
graph which can be radiocolored using a span of size k and consider a valid
radiocoloring assignment of it. This assignment consists of a two-way infinite
. . . , Ti, Ti+1, Ti+2, , . . .. of valid radiocoloring assignments to the various blocks
of nodes (one for each iteration). Each Ti is an element of {1, 2, . . . , k}n, where
n = |V | is the number of vertices of the graph Gi.

The ith iteration, where i is any integer, is the pair (Ti, Ti+1), of two con-
secutive valid radiocoloring assignments. Since there are k2n possible different
chunks, there must be two chunks, not further than k2n from each other, that
are identical. That is (Ti, Ti+1) = (Tj, Tj+1) for some i and some j between i+2
and i + k2n. But this means that there is a a valid radiocoloring assignment
consisting of a two-way infinite repetition of (Ti, Ti+1, . . . , , Tj−1). We conclude
that if a periodic graph G can be radiocolored wit a span of at most 8, then it
has a periodic radiocoloring assignment with period at most exponential in the
number of nodes of one iteration. This crucial observation, we can show that a
polynomial-space machine can guess and check any 3-coloring of the graph: us-
ing Using non-determinism we can guess valid assignments T1, T2, . . . , always
remembering the last two. After we guess Ti we check that all nodes in the
i − 1 iteration are still valid radiocolored. Once we have successfully guesses
Tk2n+2 we accept: We know that there is a periodic radiocoloring assignment
that uses a span of size no more than k.

(b) The PSPACE-completeness proof: We utilize the transformation used in
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(3) to prove the NP -completeness min span radiocoloring of ordinary planar
graph. That result reduces from 3-COLORING of planar graphs with a given
4-edge coloring. Here we reduce from 3-coloring of periodic planar graphs
with a given 4-edge coloring, which we proved that it is PSPACE-complete
in Lemma 15.

Suppose we are given a periodic planar graph G = (G̃(V,E0), E+) with a
4-edge coloring f . Consider the subgraph of G obtained by any iteration
Gi(Vi, Ei) of the periodic graph G and the edges Ei+ connecting it to the
next iteration. For this subgraph, we apply the transformation of (3), which
we also describe here.
1. For each vertex in Vi of Gi, we add a new vertex in G′, called original
vertex.
Next we subdivide every edge kl of Ei or Ei+ to get vertex ukl. The resulting
vertices are named as follows:
2. Every vertex resulting from the subdivision of an edge colored 1 is called
0-vertex. 3. Every vertex resulting from the subdivision of an edge colored 2
is called 1-vertex. 4. Every vertex resulting from the subdivision of an edge
colored 3 is called 7-vertex. 5. Every vertex resulting from the subdivision of
an edge colored 4 is called 8-vertex.
6. Now, if an original vertex has degree less than four, it receives new neigh-
bors: if original vertex v has no neighbor that is a 0-vertex, we add one new
vertex and connect it only to v. Call this vertex an extra 0-vertex. Similarly,
original vertices that have no neighbor that is a 1-vertex, 7-vertex, or 8-vertex
get a new neighbor of degree one that is an extra 1-vertex, extra 7-vertex, or
extra 8-vertex.
7. Now we add, to every 0-vertex and 8-vertex, five new neighbors of degree
one each, as in Figure 7.
8. To every extra 0-vertex and extra 8-vertex, we add six new neighbors of
degree one each, as in Figure 7.
9. To every 1-vertex and 7-vertex, we add two subtrees of a form, as shown in
8. To every extra 1-vertex and extra 7-vertex we add three of these subtrees,
as also shown in Figure 8.

original
0 or 8original original original

(1)

original
extra 0 or 8original

(2)

Fig. 7. The vertices added to each 0 or 8-vertex (rule 1), and the vertices added to
each extra 0 or 8-vertex (rule 2).

Call the induced subgraph defined by the original vertex k, the extra vertices
added for it and their neighbors, as Ok. Also, call the induced subgraph,
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1 or 7originaloriginal original original

x
y

z

(1)

1 or 7 extraoriginal
original

x
y

z

(2)

Fig. 8. The vertices added to each 1-vertex and 7-vertex (rule 1), to each extra
1-vertex and extra 7-vertex (rule 2)

defined by a new vertex ukl (obtained by the edge subdivision of edge kl) and
the new vertices added to this vertex ((by rules (7),(9)), as subgraph Skl.

Using rules 1-9, we define a graph G′
i(V

′
i , E

′
i) as follows:

(a) ∀k ∈ Vi : V (Ok) ⊆ V ′
i (by rules 1, 8, 9),

(b) ∀(k, l) ∈ Ei and k, l ∈ Vi : ukl ∈ V ′
i (by rules 2, 3, 4, 5),

(c) ∀k ∈ Vi : E(Ok) ⊆ E ′
i (by rules 8, 9),

(d) ∀(k, l) ∈ Ei : V (Skl) ⊆ V ′
i (by rules 7, 9),

(e) ∀(k, l) ∈ Ei : E(Skl) ⊆ E ′
i (by rules 7, 9),

(f) ∀(k, l) ∈ Ei and k, l ∈ Vi : (k, ukl), (ukl, l) ∈ E ′
i (by rules 2, 3, 4, 5),

(g) ∀(k, l) ∈ Ei and k ∈ Vi but l ∈ Vi+1 : (k, ukl) ∈ E ′
i (by rules 2, 3, 4, 5).

Also, define a set of pairs of nodes, called E ′
i+, as follows:

(k, l) ∈ Ei and k ∈ Vi but l ∈ Vi+1 : (ukl, l) ∈ E ′
i+ (by rules 2, 3, 4, 5).

Applying the Procedure, for any other iteration Gj of G and the edges con-
necting Gj to Gj+1, we get the same graph G′

i(V
′
i , E

′
i) and set of pairs of nodes

E ′
i+. Thus, we can apply the Procedure for only one iteration of G. The result-

ing pair (G′
i, E

′
i+) defines a periodic graph given by G′ = (G′

i(V
′
i , E

′
i), E

′
i+) and

is obtained in polynomial time to the specification of the graph G. Observe
also that, if the initial graph G is a planar graph, then the resulting graph G′

is also a planar graph. To see why, observe that the extra edges added to G′

form a star or a tree. Hence the planarity of the initial graph G remains.

We next show that G is 3-colorable, if and only if λspan(G′) ≤ 9. This is true
because our reduction replaces each vertex of the periodic graph with the same
gadgets as in (3). In (3), it is shown that such a replacement guarantees than
the new graph obtained can be radiocolored using a span of size at most 9 if
and only if and only if the original is 3-colorable. Thus, the statement holds
for the new periodic graph G′ obtained by our reduction. This completes the
PSPACE-completeness proof. �
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As in (3), it is possible to generalize the result as follows:

Theorem 17 Let r ≥ 8 be an even integer. The problem of deciding whether
a periodic planar graph G = (G̃(V,E0), E+) of maximal degree r − 2 can be
radiocolored using a span of size at most r is PSPACE-complete.

4 An Efficient, Constant Ratio Approximation Algorithm for min
span RCP for Periodic Planar Graphs

We present an efficient time, constant ratio approximation algorithm that ap-
proximates the min span radiocoloring problem for periodic planar graphs
with the same ratio as the ratio obtained by the best known approximation
algorithm for planar graphs (which we use as a subroutine for the finite spec-
ification), for the same problem.

We first present some useful notation. Recall that the minimum span of a
radiocoloring of a graph G is denoted as λspan(G). The span used by a (not
necessarily optimal) radiocoloring algorithm of G is denoted as λ′

span(G). Let
I an instance of an optimization problem P when a measurement O of the
solution is of concern. The approximation ratio rA(I) of an algorithm A for
the instance I of the problem is the ratio of O computed by Algorithm A,
denoted as OA(I), over the optimal O, denoted as O∗(I), i.e. rA(I) = OA(I)

O∗(I)
.

4.1 The modified graph

Consider the following partition of the periodic graph G: group together every
four consecutive iterations of the graph, call the j − th such group Ggroup j.
More specifically,

Ggroup j = {G(i)
⋃

G(i + 1)
⋃

G(i + 2)
⋃

G(i + 3)},∀i = . . . ,−7,−3, 1, 5, 9, . . .

where j = 1, 2, 3, 4, . . . , (respectively, i.e. j = �i/4�).

See Figure 9 for an example of the partition. Consider the graph Ggroup j of
G. Denote the first graph of the group as G(j)1 or G1, the second as G(j)2 or
G2 and so on until the fourth. The algorithm uses the following graph.

Definition 18 The graph G′
group j has the same vertex and edge set as the

graph Ggroup j except from the following modifications on the first and the
fourth graphs of group Ggroup j: Consider an edge uv ∈ E4+ of graph G4.
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Ggroup j Ggroup (j+1)

Fig. 9. The partitioning of graph G into groups of four consecutive iterations in each
group.

Recall that u ∈ V4 and the vertex v belongs to the next iteration of G, that is
v ∈ V(j∗4)+1. For each such edge uv of the graph G4 we do the following:

• Delete edge uv from G4.
• Add a new edge uv′ connecting the vertex u ∈ G4 to vertex v′, where v′ ∈ V1

is the corresponding to v (v ∈ V(j∗4)+1) vertex in graph G1. Recall that the
graphs G1, V(j∗4)+1 are isomorphic.

• Delete edge u′′v′ of graph G1, where v′ ∈ G1 and u′′ is the corresponding to
u vertex (u ∈ V4) in iteration Gj∗4−1 of G.

The produced graph for the example of a periodic graph of Figure 9 is illus-
trated in Figure 10. The graph G′

group j has two critical properties compared

'υ
G1 G2

G3

13−∈ *'' jGu

deleted

added

u

G4
13+∈ *jGu

deleted

Fig. 10. The graph G′
group j produced by the Group j of the periodic graph G.

to the initial periodic planar graph G: (i) it has the same maximum degree
as the initial graph G, i.e. Δ(G′

group j) = Δ(G) and (ii) as the next Lemma
proves, it is a planar graph.

Lemma 19 The modified graph G′
group j is a planar graph.

PROOF. Observe that, by Lemma 10 any four consecutive iterations can
be drawn in a plane using embeddings E1, E2, E1, E2, where it might be that
E1 = E2. The modified graph G′

group j is the same as graph Ggroup j (which is
planar), with the only difference that G4 is connected to G1 instead of Gj∗4+1.
Assuming that embedding E1 is used be G1, graph G4 uses embedding E2. In
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the periodic graph G, G4 is connected to Gj∗4+1 which uses embedding E1. In
the modified graph G′

group j, G4 is connected to G1, which also uses embedding
E1. Thus, there is no crossing in edges connecting G4 to G1. We conclude that
G′

group j is a planar graph. �

4.2 The Periodic Radiocoloring Partitioning Algorithm (PRPA)

The following definition is also utilized by the Algorithm. The definition uses
the observation that λspan(G) ≥ Δ(G).

Definition 20 RC Algorithm: Let an RC Algorithm be any known min
span radiocoloring polynomial time approximation algorithm for finite planar
graphs with performance ratio R (when Δ(G) is used as a lower bound). That
is, there are constants R > 1 and b such that,

Δ(G) ≤ λspan(G) ≤ λ′
span(G) ≤ R · Δ(G) + b

For example, the algorithm of (19) is an RC algorithm with R = 5
3

and b = 90.

The proposed radiocoloring algorithm for a periodic graph G, called Periodic
Radiocoloring Partitioning Algorithm (PRPA), can now be described.

Algorithm PRPA:

(1) Run an RC algorithm, on graph G′
group j.

Let λ′
span(G′

group j) be the span obtained by RC on G′
group j.

(2) For all j = 1, 2, . . . color the four graphs G(j−1)∗4+1, G(j−1)∗4+2,

G(j−1)∗4+3, , G(j−1)∗4+4 of the group Ggroup j as follows:

Set the color of each vertex of graph G(j−1)∗4+k, k = 1, 2, 3, 4 to

the color of its corresponding vertex, in Vk of V (G′
group j).

Note that Step 2 produces a radiocoloring of the whole periodic graph G with
span λ′

span(G′
group j). Thus, the algorithm computes λ′

span(G) = λ′
span(G′

group j).

4.3 Correctness and Performance of Algorithm

Theorem 21 (Correctness) The algorithm PRPA produces a radiocoloring
of a periodic graph G.
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PROOF. We prove that there is no conflict either between the colors of
vertices inside any group Ggroup j of G or between the colors of vertices in
neighbour groups of G.

We first prove that there is no conflict between the colors of vertices inside a
group Ggroup j. Any two vertices of the same group get the same colors as the
colors of their corresponding vertices in G′

group j. Also, their distance in Ggroup j

is the same distance the distance of their corresponding vertices in G′
group j, by

the construction of the latter graph. Since the radiocoloring assignment RC,
computed for G′

group j is correct, there is no conflict between the colors of the
two vertices.

Next, we check the colors of vertices in neighbour groups. Consider any vertex
u of Ggroup j and a vertex v of group Ggroup j+1. Consider also the correspond-
ing to those two vertices in G′

group j, u′ and v′, respectively. Recall that the
distance between u′ and v′ is the same distance as that of u′ and v′, by the
construction of G′

group j. Recall also that u and v get the same colors as the
colors of their corresponding vertices u′ and v′. Since the radiocoloring assign-
ment RC, computed for G′

group j is correct, there is no conflict between the
colors of vertices u and v.

�

Theorem 22 (Performance) The Algorithm PRPA runs in time O(T (RC))
and approximates the optimal span of any periodic planar graph G within an
asymptotic ratio of R, where R is the approximation ratio obtained by the al-
gorithm RC for finite planar graphs and T (RC)) is the time needed for the
RC Algorithm to run on G′

group j.

PROOF. Recall that the graph G′
group j has maximum degree Δ(G′

group j) =
Δ(G).

Note that, λ′
span(G) = λ′

span(G′
group j) ≤ R · Δ(G′

group j) + b, by the definition
of the RC Algorithm.

Since, Δ(G′
group j) = Δ(G), we get λspan(G) ≤ λ′

span(G) ≤ R · Δ(G) + b.

Also, since λspan(G) ≥ Δ(G), we get that, 1 ≤ λ′
span(G)

λspan(G)
= rPRPA(G) ≤

λ′
span(G)

Δ(G)
≤ R + b

Δ(G)
.

Finally, since Δ(G) ≥ Δ(G̃), we have 1 ≤ rPRPA(G) ≤ R + b

Δ(G̃)
.

Also, the algorithm, clearly, needs O(T (RC)) time, where T (RC) is the time
needed for algorithm RC to run on G′

group j. �
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Note 2 If the RC Algorithm is the algorithm in (19), then algorithm PRPA
has R = 5

3
and b = 90 and runs in O(n(Δ(Gi) + |E+|)) time, where n = |Vi|.

5 Extensions and Future Work

In (11), we proved that min order radiocoloring for periodic planar graphs
is also PSPACE-complete using by similar reductions. In the same work we
provide a 5/3-approximation algorithm for the problem. That algorithm is
the same as PRPA algorithm with the only difference that in Step 1, we
apply a known min order radiocoloring algorithm (instead of a RC algorithm)
of approximation ratio R (when Δ(G) is used as a lower bound). When we
utilize the algorithm of (19) as the min order radiocoloring algorithm, the
same analysis gives that the modified PRPA algorithm approximates the min
order RCP of G within an asymptotic approximation ratio of 5

3
.

An important open problem either the existence of a polynomial approxima-
tion scheme for min span RCP and/or min order RCP for periodic planar
graphs or a proof that such a scheme does not exist.
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