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Abstract

We consider a security problem on a distributed network.
We assume a network whose nodes are vulnerable to infec-
tion by threats (e.g. viruses), the attackers. A system security
software, the defender, is available in the system. However,
due to the network’s size, economic and performance rea-
sons, it is capable to provide safety, i.e. clean nodes from
the possible presence of attackers, only to a limited part of
it. The objective of the defender is to place itself in such a
way as to maximize the number of attackers caught, while
each attacker aims not to be caught.

In [7], a basic case of this problem was modeled as a
non-cooperative game, called the Edge model. There, the
defender could protect a single link of the network. Here,
we consider a more general case of the problem where the
defender is able to scan and protect a set of k links of the
network, which we call the Tuple model. It is natural to ex-
pect that this increased power of the defender should result
in a better quality of protection for the network. Ideally,
this would be achieved at little expense on the existence and
complexity of Nash equilibria (profiles where no entity can
improve its local objective unilaterally by switching place-
ments on the network).

In this paper we study pure and mixed Nash equilibria
in the model. In particular, we propose algorithms for com-
puting such equilibria in polynomial time and we provide a
polynomial-time transformation of a special class of Nash
equilibria, called matching equilibria, between the Edge
model and the Tuple model, and vice versa. Finally, we
establish that the increased power of the defender results in
higher-quality protection of the network.
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1. Introduction

Motivation. The recent huge growth of public Networks,
such as the Internet, has given Network Security, an issue
of great importance in computer networks, an even more
critical role [10]. Typically, an attack exploits the discov-
ery of loopholes in the security mechanisms of the network.
It is known that many widely used networks are vulnera-
ble to security risks (see, for example, [3]). Such risks may
result from the dynamic nature of current networks, their
large scale, economic reasons and the reduced network per-
formance on the protected nodes. So, a realistic assumption
in the analysis of such a network is to consider a partially
secure network. Then, the success of such a limited power
security mechanism is to guarantee security to as much as
possible part of the network.

In this work we introduce and model such network sce-
nario for a simple case of a security attack and a limited
power security mechanism. Specifically, we consider a net-
work whose nodes are vulnerable to infection by threats
(e.g., viruses, worms, trojan horses or eavesdroppers [4]),
called attackers. Available to the network is a security soft-
ware (or firewall), called the defender. The defender is only
able to clean a limited part of the network. The defender
seeks to protect the network as much as possible; on the
other hand, each attacker wishes to avoid being caught so
as to be able to damage the network. Both the attackers and
the defender make individual decisions for their placement
in the network while seeking to maximize their contrary ob-
jectives. Each attacker targets a node of the network chosen
via its own probability distribution on nodes. The defender
cleans a single link or a set of links chosen via its own prob-
ability distribution on links. The node chosen by an attacker
is damaged unless it crosses s link being cleaned by the de-
fender.

In [7] a basic case of this scenario, is modeled as a non-
cooperative strategic game on graphs with two kinds of
players: the vertex players representing the attackers and
the edge player representing the defender. The Individual
Profit of an attacker is the probability that it is not caught



by the defender; the Individual Profit of the defender is the
expected number of attackers it catches. Call the resulting
game the Edge model. Such a modelling captures a simple
case of the problem. At the same time, its simplicity en-
ables a relative ease for exploring the problem using Graph-
theoretic tools.

In this work, we generalize the model of [7] by giving
the defender increased power. Specifically, it may choose
a set of k edges instead of only one. We call the resulting
game the Tuple model. Note that the Edge model is a special
case of the Tuple model for k = 1. We are interested in the
Nash equilibria [8, 9] associated with this game, where no
player can unilaterally improve its individual objective by
switching to a more advantageous probability distribution.
Further, we investigate the trade-offs between the profits
in system protection and the characterization and efficient
computation of Nash equilibria caused by this increase in
the defender’s power.

Summary of Results. Our contribution in this work is
summarized as follows:

• We provide a graph-theoretic characterization of pure
Nash equilibria of the Tuple model (Theorem 3.1).
This result implies that the existence problem of pure
Nash equilibria of the Tuple model is solvable in poly-
nomial time. A consequence of this result is that the
increase in the defender’s power results in a greater
class of graphs admitting pure Nash equilibria.

• Next, we provide a graph-theoretic characterization of
mixed Nash equilibria of the problem (Theorem 3.2).
Interestingly, the characterization is similar to the cor-
responding characterization of the Edge model of [7],
indicating the extensibility of the latter model.

• Inspired by a class of polynomial-time Nash equilibria
introduced in the Edge model, called Matching, we in-
troduce k-matching profiles for the Tuple model. We
provide sufficient conditions for such a profile to be a
Nash equilibrium, called k-matching Nash equilibrium
(Lemma 4.1).

• Furthermore, we discover a strong relationship be-
tween matching Nash equilibria of the Edge model
and k-matching Nash equilibria introduced here: From
any Matching mixed Nash equilibrium of the Edge
model a k-matching mixed Nash equilibrium of the
Tuple model can be computed in polynomial time and
vice versa (Theorem 4.2). This, implies that the Tuple
model is polynomial-time reducible to the Edge model
with respect to k-matching Nash equilibria.

• The polynomial-time reduction between k-Matching
and Matching Nash equilibria provided here implies a
characterization of graphs admitting k-matching Nash

equilibria (Corollary 4.8). Furthermore, it enables us
to develop a polynomial-time algorithm for comput-
ing k-Matching Nash equilibria for graph instances of
the Tuple model that satisfy the characterization (The-
orems 4.9, 4.10). In particular, the algorithm utilizes
as a subroutine an algorithm of [7] for computing a
Matching Nash equilibrium. Then, it transforms it, to
a k-matching Nash equilibrium, in time O(k·n), where
n is the number of nodes in the network.

• Finally, our study demonstrates the impact of the
power of the defender, the parameter k, on the secu-
rity of the network. We show that the profit of the de-
fender depends linearly on the parameter k in the Nash
equilibria considered.

Related Work. This work contributes to the broad field
of Network Security. It considers a network security prob-
lem exploring tools of a new area, Algorithmic Game The-
ory and a quite developed field, of Graph Theory. Net-
work security problems have been first modeled as strategic
games and associated Nash equilibria were studied on them
in [2, 7, 6].

In [2] the authors consider a security game and estab-
lish connections with variants of a Graph Partition problem.
In [7] the authors study the basic case of the problem con-
sidered here while, in subsequent work ([6]), they consider
other families of structural Nash equilibria for the same
problem in some practical families of graphs.

Another work which employs Game Theory on security
problems is that of [4] studying the feasibility and compu-
tational complexity of privacy tasks in distributed environ-
ments with mobile eavesdroppers. This work does not uti-
lize Graph-Theoretic tools. In contrast, [1] employs Graph-
Theoretic tools to study a two-player game on a graph. It
establishes connections of the problem with the k-server
problem and provides an approximate solution for the sim-
ple network design problem. However, this study does not
concern network security problems.

Due to space limits, some of the proofs of the results are
omitted here; they are included in the full version of the
paper [5].

2. The Model

We consider an undirected graph G(V,E), with no iso-
lated vertices, with |V (G)| = n and |E(G)| = m, and an
integer 1 ≤ k ≤ m. When there is no confusion we omit
G in V (G) and E(G). For a set of vertices X ⊆ V , de-
note NeighG(X) = {u 6∈ X : v ∈ V, (u, v) ∈ E(G)}.
Let Ek be the set of all tuples of k distinct edges of the



graph G. When there is no confusion, we refer to a tu-
ple of k edges simply as a tuple. For any t ∈ Ek, let
V (t) = {v ∈ V : (v, u) ∈ t}. Similarly, for any t ∈ Ek,
let E(t) = {e ∈ E : e ∈ t}. Also, for any T ⊆ Ek,
let V (T ) =

⋃
t∈T V (t) and E(T ) =

⋃
t∈T E(t). For any

T ⊆ Ek, the graph obtained by T , denoted by GT , has
V (GT ) = V (T ) and E(GT ) = E(T ). Let GCD(i, j) and
LCM(i, j) be the greatest common divisor and the least
common multiple of the integers i and j, respectively.

Definition 2.1 (Tuple Model) Associated with G is a
strategic game Πk(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on a
graph G, where k is an integer 1 ≤ k ≤ m, defined as
follows:

• The set of players is N = NV P ∪ NTP , where NV P

is a finite set of ν vertex players, vpi, 1 ≤ i ≤ ν, and
NTP is a singleton set of the tuple player, tp.

• The strategy set Si of each player vpi ∈ NV P , is V ,
that is a pure strategy of vpi is any vertex of G. The
strategy set Stp of the tuple player is Ek, that is a pure
strategy of tp is any tuple of k edges of G. Thus, the
strategy set of the game S = V ν × Ek.

• Fix any pure strategy profile s = 〈s1, . . . , sν , stp〉 ∈
S. The Individual Profit of vertex player vpi ∈ NV P

is a function IPi : S → {0, 1} such that

IPi(s) =
{

0, si ∈ V (stp)
1, si 6∈ V (stp)

Intuitively, vpi receives 1 if it is not caught by the tuple
player, and 0 otherwise.

The Individual Profit of the tuple player is a function
IPtp : S → N such that IPtp(s) = |{i : si ∈ V (stp)}|.

Remark 2.1 For k = 1, the Tuple model coincides with
the Edge model. Thus, for any graph G, Π1(G) refers to
an instance of the Edge model or an instance of the Tuple
model for k = 1 equivalently.

The pure profile s is a pure Nash equilibrium [8, 9] (abbre-
viated as pure NE) if, for each player x ∈ N , it maximizes
IPx over all profiles t that differ from s only with respect to
the strategy of player x. A mixed strategy for player x ∈ N
is a probability distribution over its strategy set Sx. Thus,
a mixed profile s = 〈s1, . . . , sν , stp〉 ∈ S is a collection
of mixed strategies, one for each player. Denote stp(t) the
probability that the tuple player chooses the tuple t ∈ Ek

in s; denote si(v) the probability that player vpi chooses
vertex v ∈ V in s.

The support of a player x ∈ N in a profile s, denoted
Ds(x), is the set of pure strategies in its strategy set to
which x assigns strictly positive probability in s. Denote
Ds(V P ) =

⋃
vpi∈NV P

Ds(vpi). Let also Tupless(v) =

{t : v ∈ V (t), t ∈ Ds(tp)}, i.e. set Tupless(v) contains
all tuples t in the support of player tp such that v ∈ V (t).
Given a profile s, we denote (s−x, [y]) the profile obtained
by s, where all but player x play as in s and player x plays
the pure strategy y.

Fix a mixed profile s. For each v ∈ V , denote Hit(v) the
event that the tuple player hits vertex v. So, the probability
of Hit(v) is Ps(Hit(v)) =

∑
t∈Tupless(v) stp(t). For each

vertex v ∈ V , denote VPs(v) the expected number of vertex
players choosing v on s, i.e. VPs(v) =

∑
vpi∈NV P

si(v).
For each edge e = (u, v) ∈ E, denote VPs(e) = VPs(u) +
VPs(v). Moreover, for a tuple t ∈ Ek denote VPs(t) =∑

v∈V (t) VPs(v).

A mixed profile s induces an Expected Individual Profit
IPx for each player x ∈ N , which is the expectation, ac-
cording to s, of its corresponding Individual Profit (defined
previously for pure profiles). The mixed profile s is a mixed
Nash equilibrium [8, 9] (abbreviated as mixed NE) if for
each player x ∈ N , it maximizes IPx over all profiles t
that differ from s only with respect to the mixed strategy of
player x. A mixed profile is uniform if each player uses a
uniform probability distribution on its support.

We proceed to calculate the Expected Individual Profit.
Clearly, for any vertex player vpi ∈ NV P ,

IPvpi(s) =
X

v∈V (G)

si(v) · (1 − Ps(Hit(v))) (1)

and, for the tuple player tp,
IPtp(s) =

X
t∈Ds(tp)

stp(t) · VPs(t). (2)

2.1. Background

A graph G(V,E) is a bipartite graph if its vertex set can
be partitioned as V = V1 ∪ V2 such that each edge e ∈ E
has one of its end vertices in V1 and the other in V2. Fix
a set of vertices S ⊆ V . The graph G is an S-expander
graph if for every set X ⊆ S, |X| ≤ |NeighG(X)|. A set
M ⊆ E is a matching of G if no two edges in M share
a vertex. A vertex cover of G is a set V ′ ⊆ V such that
for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An
edge cover of G is a set E′ ⊆ E such that for every vertex
v ∈ V , there is an edge (v, u) ∈ E′. An edge cover of G
of minimum size can be computed in polynomial time (see,
e.g. [11, page 115]). Say that an edge (u, v) ∈ E (resp., a
vertex v ∈ V ) is covered by the vertex cover V ′ (resp., the
edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if there
is an edge (u, v) ∈ E′). A set IS ⊆ V is an independent
set of G if for all vertices u, v ∈ IS, (u, v) /∈ E. Clearly,



IS ⊆ V is an independent set of G if and only if the set
V C = V \ IS is a vertex cover of G.

Our study utilizes the notion of Matching NE defined for
the Edge model in [7] and some related Theorems presented
there. As explained in Remark 2.1, for any G, Π1(G) is
both an instance of the Edge model and an instance of the
Tuple model for k = 1. Thus, Matching profiles of the
Edge model can be defined in terms of the Tuple model as
follows:

Definition 2.2 ([7]) A matching profile s1 of Π1(G) sat-
isfies: (1) Ds1(V P ) is an independent set of G and (2)
each vertex v of Ds1(V P ) is incident to only one edge of
Ds1(tp).

Lemma 2.1 ([7]) Consider a graph G for which Π1(G)
contains a Matching profile such that E(Ds(tp)) is an edge
cover of G and Ds(V P ) is a vertex cover of the graph ob-
tained by Ds(tp). Applying the uniform probability distri-
bution on the support set of each player, we get a Nash equi-
librium for Π1(G), called a Matching NE.

Theorem 2.2 ([7]) For any graph G, Π1(G) contains a
Matching Nash equilibrium if and only if G contains an in-
dependent set IS such that G is a (V C)-expander graph,
where V C = V \IS.

3. Nash Equilibria

Theorem 3.1 For any G, Πk(G) has a pure Nash equilib-
rium if and only if G contains an edge cover of size k.

The above theorem implies that if |V (G)| ≥ 2k + 1,
then Πk(G) has no pure NE and that for any graph G, the
existence problem of pure NE on Πk(G) can be solved in
polynomial time. For the rest of the cases of Theorem 3.1,
i.e. when the minimum edge cover of G is of size more than
k, we prove the following characterization for (mixed) NE
for the model.

Theorem 3.2 (Characterization) For any graph G that
has a minimum edge cover of size at least k + 1, a mixed
profile s is a Nash equilibrium for any Πk(G) if and only if:

1. E(Ds(tp)) is an edge cover of G and Ds(V P ) is a
vertex cover of the graph obtained by Ds(tp).

2. The probability distribution of the tuple player over
Ek is such that Ps(Hit(v)) = Ps(Hit(u)) =
minv Ps(Hit(v)), ∀ u, v ∈ Ds(V P ).

3. The probability distributions of the vertex players
over V are such that VPs(t1) = VPs(t2) =
maxt VPs(t),∀ t1, t2 ∈ Ds(tp).

4. k-Matching Nash Equilibria

In [7] a special class of polynomial-time Nash equilib-
ria is introduced for the Edge model, called Matching Nash
equilibrium, based on the notion of Matching profiles. In
this section, we extend this class of equilibria to the Tuple
model.

Definition 4.1 A k-Matching profile s of Πk(G) satisfies:
(1) Ds(V P ) is an independent set of G, (2) each vertex
v of Ds(V P ) is incident to only one edge of the edge set
E(Ds(tp)) and (3) each edge e ∈ E(Ds(tp)) belongs to an
equal number of distinct tuples in Ds(tp).

Observation 4.1 For k = 1, k-Matching profiles on
Πk(G) coincide with Matching profiles of the Edge model
on Π1(G).

Lemma 4.1 Consider a graph G for which Πk(G) contains
a k-Matching profile such that E(Ds(tp)) is an edge cover
of G and Ds(V P ) is a vertex cover of the graph obtained
by Ds(tp). Applying the uniform probability distribution on
the support set of each player, we get a Nash equilibrium for
Πk(G).

Definition 4.2 A k-Matching profile satisfying conditions
of Lemma 4.1 is called a k-matching NE.

We now present our main result:

Theorem 4.2 (The Power of the Defender) For any G,
from any Matching Nash equilibrium s1 of Π1(G) we can
compute in polynomial time a k-matching mixed Nash equi-
librium sk of Πk(G) and vice versa. Further, it holds that
IPtp(sk) = k · IPtp(s1).

Proof. We first prove:

Lemma 4.3 For any G, from any k-Matching Nash equilib-
rium sk of Πk(G), we can compute a Matching Nash equi-
librium s1 of Π1(G), in polynomial time.

Proof. Let sk be a k-Matching NE of Πk(G). We construct
a uniform profile s1 of Π1(G) such that, for all vpi ∈ NV P ,
Ds1(vpi) = Dsk(V P ) (thus, Ds1(V P ) = Dsk(V P )) and
Ds1(tp) = E(Dsk(tp)). Next, we show that profile s1 is a
Matching profile of Π1(G).

Observe that the definition of a k-Matching profile dif-
fers from a Matching profile (Definition 2.2) only in con-
dition (2) and in that it was supplemented with condition



(3). Thus, condition (1) of the definition of a Matching pro-
file is fulfilled in the constructed profile s1. In the defi-
nition of a Matching profile (Definition 2.2), condition (2)
requires each vertex v ∈ Ds1(V P ) to be incident only to
one edge of the Ds1(tp). In the definition of a k-Matching
profile (Definition 4.1), condition (2) requires each ver-
tex v ∈ Dsk(V P ) to be incident to only one edge of set
E(Dsk(tp)). However, Ds1(tp) = E(Dsk(tp)). Since sk

satisfies condition (2) of the definition of a k-Matching pro-
file, we get that condition (2) of the definition of a Matching
profile is also fulfilled in s1. Hence, s1 is a Matching profile
of Π1(G).

Next, we show that s1 satisfies also all conditions of
Lemma 2.1. Since Ds1(tp) = E(Dsk(tp)) and E(Dsk(tp))
is an edge cover of G in instance Πk(G) (recall that sk is
a mixed NE), Ds1(tp) is an edge cover of G in instance
Π1(G). Moreover, the subgraph of G obtained by Ds1(tp)
in Π1(G) is equal to the subgraph of G obtained by Dsk(tp)
in Πk(G). Dsk(V P ) is a vertex cover of the graph obtained
by Dsk(tp) and Ds1(V P ) = Dsk(V P ). Thus, Ds1(V P ) is
a vertex cover of the graph obtained by Ds1(tp). Moreover,
s1 is a uniform profile. By Lemma 2.1, it follows that s is a
Matching NE of Π1(G). Finally, note that, s1 is constructed
in polynomial time.

Corollary 4.4 IPsk(tp) = k · IPs1(tp).

Lemma 4.5 For any Matching Nash equilibrium s1 of
Π1(G) we can compute a k-Matching Nash equilibrium sk

of Πk(G) in polynomial time.

Proof. We compute a set of tuples of k edges as fol-
lows: We label the edges in set Ds1(tp) with consecutive
numbers, starting from 0 to Enum − 1, where Enum =
|Dsk(tp)|. Then we construct consecutive tuples ti, i ≥ 1
by letting

ti = 〈e((i−1)·k)mod(Enum), . . . , e(i·k−1)mod(Enum)〉

This construction allows us to move cyclically around
the edges and choose consecutive k-tuples as we pro-
ceed. Let set T = {t1, t2, . . . , tTnum} be the
set of the Tnum first tuples we construct. Let-
ting Tnum = Enum

GCD(Enum,k) , the last edge of tu-
ple tTnum is edge e( Enum

GCD(Enum,k) ·k−1)mod(Enum) =
e(LCM(Enum,k)−1)mod(Enum) = eEnum−1 i.e., it is the last
edge of set Ds1(tp). Since we start creating tuples start-
ing from the first edge of Ds1(tp), we visit each edge of
Ds1(tp) and add it to T , on an equal number of times.
Moreover, by our choice of Tnum, since Tnum · k =

Enum

GCD(Enum,k) · k = LCM(Enum, k), T contains the least
number of tuples containing each edge an equal number of
times. Furthermore, we can compute this number:

Claim 4.6 Each edge e ∈ E(Dsk(tp)) belongs to exactly
k

GCD(Enum,k) tuples.

Now we are ready to construct a uniform profile sk of
Πk(G) such as Dsk(vpi) = Ds1(V P ), for all vpi ∈ NV P

(thus Dsk(V P ) = Ds1(V P )) and Dsk(tp) = T .

We first show that sk is a k-Matching profile of Πk(G).
Condition (1) of a k-Matching profile is fulfilled because
condition (1) of a Matching profile is fulfilled in s1 and
Ds1(V P ) = Dsk(V P ). Condition (2) of a k-Matching pro-
file is also fulfilled in sk because condition (2) of a Match-
ing profile is fulfilled in s1 and E(Dsk(tp)) = Ds1(tp).
Moreover, by Claim 4.6, each edge e ∈ E(Dsk(tp)) be-
longs to an equal number of tuples, thus, condition (3) of
the definition of k-Matching profile is also fulfilled. Hence,
sk is a k-Matching profile of Πk(G).

we show that s1 satisfies also all conditions of Lemma
2.1. Note first that s is a uniform profile. We show
that E(Dsk(tp)) is an edge cover of G. This is true be-
cause E(Dsk(tp)) = E(T ) = Ds1(tp) and Ds1(tp) is an
edge cover of G, by condition (ii) of Lemma 2.1. Thus,
E(Dsk(tp)) is an edge cover of the graph G. We next show
that Dsk(V P ) is a vertex cover of the subgraph of G ob-
tained by Dsk(tp). The subgraph of G obtained by T =
Dsk(tp) is equal to the subgraph of G obtained by Ds1(tp),
since E(T ) = Ds1(tp). Moreover, Dsk(V P ) = Ds1(V P )
and Ds1(V P ) is a vertex cover of the subgraph obtained by
Ds1(tp), by condition (iii) of Lemma 2.1. Hence, Dsk(V P )
is a vertex cover of the subgraph of G obtained by Dsk(tp).
We conclude that condition 1 of Theorem 3.2 is satisfied by
sk. Thus, sk is a k-matching NE of Πk(G) according to
Lemma 4.1. Moreover, note that sk is computed in polyno-
mial time.

Corollary 4.7 IPsk(tp) = k · IPs1(tp).

Lemmas 4.3 and 4.5 prove the first statement of the Theo-
rem, while Corollaries 4.4 and 4.7 prove the second. The
proof of Theorem 4.2 is now complete.

We proceed to characterize graphs that admit Nash equi-
libria.

Corollary 4.8 (characterization of k-Matching NE)
For any graph G, Πk(G) contains a k-matching Nash
equilibrium if and only if G contains an independent set IS
such that G is a (V \IS)-expander graph.

4.1. A Polynomial-Time Algorithm

We now translate the proof of Theorem 4.2 into a
polynomial-time algorithm for finding k-Matching NE for



any Πk(G), assuming that sets IS, V C = V \IS, such that
IS is an independent set of G and G is a V C-expander
graph, are given to the algorithm as input. The algorithm,
called Atuple, uses as a subroutine, an algorithm of [7] for
computing Matching NE of the Edge model. Algorithm
Atuple(Π(G), IS, V C) is described in pseudocode in Fig-
ure 1.

Algorithm Atuple(Πk(G), IS, V C)
INPUT: A game Πk(G), a partition of V into sets IS,
V C = V \IS, such that IS is an independent set of G
and G is a V C-expander graph.
OUTPUT: A mixed NE sk for Πk(G).

1. s1 = A(Π1(G), IS, V C).

2. Label the edges of set Ds1(tp) with consecutive in-
tegers starting from 0, i.e., e0, e1, . . .

3. Compute a set T of tuples as follows:

(a) Set T = ∅, CurEdge = 0 (label of current
edge of Ds1(tp)) and Enum = |Ds1(tp)|.

(b) While TRUE do:

i. Set tuple = 〈〉
ii. for (i = 1; i ≤ k; i ++)

A. tuple = tuple ∪ 〈eCurEdge〉
B. CurEdge=(CurEdge++)mod(Enum)

iii. T = T ∪ {tuple}
iv. If CurEdge mod(Enum)==0 then

Exit While loop

4. Define a uniform profile sk such that: Dsk(vpi) :=
IS, for all vpi ∈ NV P , and Dsk(tp) := T .

Figure 1. Algorithm Atuple

Theorem 4.9 (Correctness) Given its inputs, algorithm
Atuple computes a k-Matching Nash equilibrium of Πk(G).

Theorem 4.10 (Time Complexity) Algorithm Atuple ter-
minates in time O(k · n + T (G)), where T (G) is the time
needed to compute a Matching Nash equilibrium for the
Edge model on G.

4.2. Applications

We demonstrate the applicability of k-Matching NE on
a quite broad family of graphs, that of bipartite graphs.
Specifically, we show that bipartite graphs possess such
equilibria and one can compute them in polynomial time.

Theorem 4.11 For any Πk(G), for which G is a bipartite
graph, a k-matching mixed Nash equilibrium of Πk(G) can

be computed in polynomial time, O
(√

n ·m · logn
n2

m

)
,

using Algorithm Atuple.
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