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Abstract
This paper describes a new algorithm for view volume
culling. During an interactive walkthrough of a 3D scene, at
any moment a large proportion of objects will be outside of
the view volume. Frame-to-frame coherence implies that the
sets of objects that are completely outside, completely inside,
or intersecting the boundary of the view volume, will change
slowly over time. This coherence is exploited to develop an
algorithm that quickly identifies these three sets of objects,
and partitions those completely outside into subsets which are
probabilistically sampled according to their distance from the
view volume. A statistical object representation scheme is
used to classify objects into the various sets.  The algorithm is
implemented in the context of a Binary Space Partition tree,
and preliminary investigation of the algorithm on two scenes
with more than 11,000 polygons, suggests that it is
approximately twice as fast as the hierarchical bounding box
approach to culling, and that only about 14% of the total
frame-polygons are passed through the viewing pipeline
during the course of a walkthrough.

Keywords
Clipping, culling, graphics pipeline, BSP trees, virtual reality
walkthrough.

1. Introduction

In the COVEN (Collaborative Virtual Environments)
project (Normand and Tromp, 1996) we are developing a very
large scenario for a virtual travel rehearsal within London.
One of the problems that needs to be faced is that such large
scale scenes cannot realistically be rendered at frame rates
fast enough for real-time walkthrough and interaction - the
data base is just too large. Several authors have addressed this
issue in recent years (for example, Airey, Rohlf and Brooks,
1990; Teller  and Sequin 1991; Teller, 1992; Naylor, 1992;
Greene, Kass and Miller, 1993; Greene, 1996; Sudarsky and
Gotsman, 1996). This paper concentrates on one particular
aspect of the problem that we refer to as View Volume
culling.

For any frame in an interactive walkthrough of a
dynamically changing scene, the set of objects forming the
scene data base is partitioned into three subsets: (I) those
objects that are entirely inside the current view volume, (O)
those that are completely outside, and (B) those that are
intersected by at least one polygon belonging to the boundary
of the view volume.

The aim of view volume (VV) culling is to efficiently identify
these sets, O, I and B. Objects in set I may be rendered
(without the necessity of clipping), those in B are rendered but
require clipping, and those in C may be ignored. Clipping is
an expensive operation, but in practice  for a large scene, only
a small fraction of the total number of objects actually
intersect the boundary of the view volume at any frame
therefore requiring clipping. Blinn (1991) remarked that
clipping seems to be a wasted operation most of the time -
having no visible effect on the rendered image; for the vast
majority of objects, clipping will either determine that they
needn’t have been “clipped” at all (I), or remove them
altogether (O). One of the advantages of VV culling is that it
enables targeting of the clipping process toward only those
objects that need to be clipped.

This partition of the scene data base changes dynamically
for two reasons: the view frustum changes (translates,
rotates), and objects move. However, in most circumstances
there will be coherence from frame to frame based on spatial
and temporal locality. Spatial locality implies that whichever
of the three sets to which an object belongs in a particular
frame, its neighbours are likely to belong to that same set.
Temporal locality implies that whichever set an object is in
during this frame, it is likely to be in the same set in the next
frame. Since the sets correspond to regions of space relative
to the VV, another way of expressing these localities is that
objects tend to be in the same regions of space as their
neighbours (obvious) and that from frame to frame they tend
to stay in the same region of space. If we consider the region
of space corresponding to the set O, we can also consider the
partitioning of this space into subspaces which are classified
according to their “distance” from the VV. The principles of
temporal and spatial locality will apply also within these
subspaces.

An ideal VV culling algorithm would determine the
partition of the objects into these sets efficiently, based on
temporal and spatial locality, and during the rendering process
objects in O would not be touched at all. Avoiding references
to objects in O could be important, since for a very large data
base objects in O may be stored on disc, so that accessing
them may be extremely expensive. Of course, however, it is
not possible to avoid all references to O, since the set
membership would change over time thus requiring an
iteration through the data base in order to check  for possible
changes of allocation of objects to the sets.

One way to avoid an iteration through all objects is by
exploiting hierarchy (Clark, 1976; Rohlf and Helman, 1994).
For example, with hierarchical bounding volumes, as soon as
any volume is determined as being wholly in I or O, then all
of its children must be in the same set. The problems here are
the overheads in building the hierarchy, and more
importantly, of maintaining it as the scene itself changes
through time.

An alternative approach is to subdivide world space into a
uniform grid of voxels, with each voxel maintaining a list of



identifiers of objects that intersect it. Objects belonging to
sets I and B can easily be determined, since at any time a set
of voxels corresponds to the VV, and only objects within this
set need to be rendered. In fact it is possible to differentiate
objects belonging to I or B in this scheme. However, there are
several drawbacks to this type of space partition approach:
 
• If the subdivision has low resolution (i.e., a relatively

small number of voxels) then there may be large errors in
the list of candidate objects for clipping.

 
• If the subdivision has high resolution then a large memory

overhead is required, and also there is a higher cost of
accurately computing the set of voxels corresponding to
the view volume and the sets of voxels corresponding to
objects.

 
• There is substantial cost in computing an accurate set of

voxels corresponding to the view volume.
 
• Every voxel intersecting the view volume must be

examined (there could be a large number of these) in order
to determine if there are objects present. This can be
expensive especially when objects are not uniformly
distributed throughout the space. On the other hand an
adaptive (e.g., oc-tree) method of subdivision can lead to
a heavy cost in tracing the objects and view volume
through an irregular space partition.

Nevertheless, this approach has the characteristics of a
genuine VV culling algorithm in that it can in principle satisfy
the fundamental requirement - to process only those objects
inside or on the boundary of the view volume, and to not
touch at all those that are outside the view volume. The
problem with the space subdivision approach though is that it
has undesirable characteristics from the point of view of
implementation.

In practice VV culling would be combined with visibility
culling. The latter is concerned with exploiting visibility
relationships amongst objects in order to render only those
fragments of objects that are actually visible in a given frame.
This technique is most often used in architectural
walkthrough, where there are natural subdivisions of the
overall space (Airey, Rohlf, and Brooks, 1990; Teller and
Sequin 1991; Funkhouser, Sequin and Teller, 1992). For
example, in Teller and Sequin (1991) this subdivision is
exploited by pre-computing a region-to-region visibility, and
then during the execution of the walkthrough there is an eye-
to-region visibility computation.  Other methods have
exploited partitioning trees, such as oc-trees and Binary Space
Partition (BSP) trees. The use of an oc-tree in conjunction
with a hierarchical Z-Buffer was introduced by (Greene, Kass
and Miller, 1993; Greene, 1996). BSP trees were used by
Naylor (1992) who incrementally constructs a BSP tree of the
image using a traversal of the scene BSP tree from the
viewpoint. Subtrees of the scene BSP tree that have not yet
been traversed are compared with the image BSP tree, and if
such a subtree can be shown to be already completely covered
by a region represented in the image tree, then it is discarded.

Visibility culling is beneficial in the case of  scenes that
are heavily partitioned by objects such as walls that do
obscure most of the scene “behind” them. Its impact is
lessened for environments that  have a large number of
smaller objects (for example, as might be found within a
complex room).  However, (Coorg and Teller, 1996) have
started to address how this problem might be tackled in the
context of visibility culling.

In the VV culling algorithm presented here, at any moment
objects are classified into the three sets I, B and O, and the set
O is partitioned into subsets O1, ..., On based on the distance of
their contained objects from the view frustum. The objects in

set Oi are sampled in each frame, with probability of selection
inversely proportional to i, and checked to examine if they
have changed set. The probabilities are updated according to
changes in position and orientation of the view frustum, so
that when the view frustum is moving away from the region
corresponding to a particular set, its corresponding sampling
probabilities are reduced. Moreover we employ a statistical
representation scheme for objects which allows for efficient
computation of the relationship between objects and the
planes forming the view frustum.

In Section 2 we define the statistical representation of
objects, and how this is used. The main algorithm is given in
Section 3, followed by implementation details in Sections  4
and 5.  Discussion and conclusions follow in Sections 6 and 7.

2. Statistical Object Representation

Objects are represented by their statistical properties, in
particular their mean vector and covariance matrix. We adopt
a paradigm that supposes that objects are in an ideal sense
probability distributions over a vector-valued random variable
(x,y,z) (which has, for example, a tri-variate Gaussian
distribution). Samples from this particular distribution would
be points in 3D space, and a large number of points would
form an ellipsoid cluster with decreasing density towards the
periphery. In this paradigm any region of space has an
associated non-zero probability of containing a part of the
object - so that theoretically, every object is distributed over
the whole of space, though with greatest probability density
corresponding to where the object actually “is” (in the normal
sense). A 2D analogue is shown in Figures 1 and 2.

A probability distribution can be completely characterised
by its moments, provided that these are all finite. In practice,
the first two moments (the mean and variance for a scalar
variable) are very informative, providing information about
location, dispersion and correlation between x, y and z. Hence
an object can be approximated by its mean vector (location)
and covariance matrix (dispersion and correlation). This idea
has been used in (Gottschalk, Lin, and Manocha, 1996) where
the eigenvectors (or principle components) obtained from the
covariance matrix are used to determine an object’s oriented
bounding box. In our algorithm the object is approximated by
a bounding ellipsoid.

The following are some important relationships that we use
in the construction of the algorithm. Let µp be the mean vector
for the random variable p, and Σp the covariance matrix. The
main diagonal of the covariance matrix consists of the
variances of x, y and z respectively, and the off-diagonal
terms the covariances. In the case of a Gaussian distribution,
if all the covariances were zero and all the variances equal,
then a large number of points sampled from this distribution
would form a spherical shape.

Suppose that the object is transformed by an affine
distribution, so that any point p becomes q = pA + v where A
is a 3×3 non-singular matrix and v is a translation vector.
Then µq = µpA + v and Σq = ATΣpA, where AT is the transpose
of A.

Let ax + by + cz + d = 0 be a plane equation, with normal n
= (a,b,c). Then the perpendicular distance D of any point p to
the plane is (nTp + d)/|n|. If we consider p to be a random
point on an object distribution, then the mean and variance of
the distribution of the scalar distance  D of that object from
the plane is given by:

µD = (nTµp + d)/|n|
ΣD = nTΣn/|n|

A fundamental observation for our algorithm is that we can
use this result to characterise the likely relationship of an
object to the (typically) six planes of the view volume.



Suppose that (nTp + d) = 0 is the oriented equation of a
clipping boundary, where normal n points in the “outside” (or
“invisible”) direction. Then if for an object we find µD > 0 (the
mean distance of this object from the plane is positive) this
indicates that the object is likely to be outside of that clipping
plane, and similarly, inside when  µD < 0.

In particular, if the distribution is taken to be Gaussian as
mentioned above, then the distribution of D is also Gaussian,
and approximately 95% of the distribution of D lies within
bounds µD ± 2σD where σD = √ΣD.

Up to now we have not specified object representation.
However, suppose as usual that our actual representation of
objects is as polyhedra. Then we estimate the mean vector µp

by taking the means of the vertices of the polyhedra, and the
covariance matrix by forming the estimated covariance
matrix:

Sij = ΣΣ(ui - mi)(uj - mj)/N (i,j = 1,2,3).

where N is the number of vertices, u1 is the x-variate, u2 is the
y-variate, u3 is the s-variate with m1, m2, m3 being the
corresponding estimated means.
Our paradigm inherently considers objects as solids, whereas
the observations are only on the boundaries. Hence the
estimation of the variances including ΣD will be inflated. For
the purposes of the algorithm we are interested in finding the
clipping plane (if any) for which the (positive) mean distance
is maximum. This corresponds to the clipping plane which the
object is “most outside”. (For example, the object could be
inside all planes except for the far and right clipping planes.
In such a case four of the mean plane distances would be
negative, and two positive. We are interested in finding the
maximum positive distance, and the corresponding plane). For
this purpose, instead of using µD, which does not take account
of the possible variation in D, we use µD - k.σD as the measure
of distance (for some positive constant k - for example, in the
ideal Gaussian case k would be 2 to capture 95% of the
distribution). If µD > 0 then obviously µD+ k.σD > 0, so we do
not need to consider this side of the interval. On the other
hand if  µD - k.σD > 0, then this is strong evidence that the
entire object is outside of the clipping boundary, whereas if µD

> 0 but µD - k.σD < 0 we would take this as evidence that the
object at least partly intersects the boundary.

To summarise this section:

• We “idealise” objects as tri-variate continuous (point-
mass) probability distributions in 3D World Coordinate
space.

 
• An object is characterised by its mean vector and

covariance matrix, which provides information about
location, dispersion and orientation (i.e., the covariances
amongst x, y and z).

 
• The relationship between an object and the view volume

is characterised by the plane if any which has the
maximum distance from the object, measured by  µD -
k.σD amongst those planes for which this value is
positive.

We next use these results to present the algorithm.

3. Concepts of the Culling Algorithm
3.1 The Basic Algorithm

The algorithm maintains three data structures: (I) the set of
identifiers of objects that are completely inside the view
volume (and which therefore do not require clipping). (B) the
set of identifiers of objects that intersect at least one boundary
(and therefore require clipping).

The third data structure is a two dimensional array: for
each of the six clipping boundaries we have an array of sets of
identifiers of objects, where the members of a set have their
“distances” (as defined above) within a certain interval. These
intervals are constructed using a “width” (w) which would be
chosen to be greater than the expected or typical distance of a
camera move from frame to frame. Let B[i,j] be the set of
objects corresponding to plane i (i = Left, Right, Bottom, Top,
Front, Back) at level j. The levels are characterised by   (j-1)w
≤ distance < jw (j = 1,2,...,L) where L is the number of levels.
We also refer to the elements of this array as “cells”.

Now any object will either have been determined to be in
the visible set (I), or in the boundary set, or at least one of its
distances from the clipping planes is positive. In this case find
the plane (i) for which this distance (d) is a maximum (Figure
3), and put the identifier for the object into the sequence B[i,j]
where (j-1)w  ≤ d < jw.

Finally, associated with each B[i,j] is a value pij ∈ [0,1],
representing the probability that an object in this set will be
selected for checking to determine whether it has moved into
another set (another plane, or another level). These
probabilities are constructed so that within each plane i they
are inversely proportional to j. A first overview of the
algorithm is as follows:

Algorithm

Find the estimated mean vector and covariance matrix for all
objects using the object vertices. This step is only carried out
once, since if an object is transformed, the new mean and
covariance matrix can be found by transformation.

Render all objects, recording which ones are actually clipped,
forming the initial sets I and B.

For each camera change:

1. Obtain the new clipping planes in World Coordinates.
2. Update the probabilities pij according to how the VV has
changed.
3. For each plane i, for each level j, use the pij to select
objects for checking, and
move those objects to their new sets as required. Objects
that appear to move into set I are never moved directly into
I but into B first of all.
4. Render all objects in I without clipping, but checking if
any should be moved to B.
5. Render all objects in B with clipping, but checking if any
should be moved into I or into the B[i,j].

For any object that is transformed:

a. Transform its mean vector and covariance matrix.
b. If it is in B[i,j] check it and move it to the appropriate
new set.

3.2 Updating the Probabilities

An important aspect of the algorithm is that the
probabilities adapt to how the viewpoint (and therefore view
volume) is changing - so that, for example, when the VV is
moving away from a set of objects their selection probability
is decreased, and when moving towards the set it is increased.
Such updating must take account of rotation of the view
volume. One way to do this would be to keep an overall mean
and covariance matrix for all objects in, for example, B[i,_],
and use these to compute a corresponding µD - σD  with respect
to plane i. Suppose dk and dk+1 are these distances for two
successive camera specifications, then the change dk+1 - dk



could be used to update the probabilities pij (j=1..L). However,
this scheme would require a lot of computation to update the
overall mean vectors and covariance matrices whenever
objects joined or left a particular cell.

Another possibility would be to base this on an arbitrary
single object in a cell. The computation would be light and
necessary anyway, but in the case of rotation, if this object
happens to be near the part of the plane that is rotating
towards it, then the distance would have seen to have
decreased, but the opposite should be the case for objects that
are have moved away  from the plane because of the rotation.

Instead we use the following scheme. We define a virtual
object that initially corresponds to the view volume expressed
in World Coordinates. This object never changes. However, as
the camera changes and the actual view volume changes, the
changing distances of this virtual object from the planes of the
view volume are used to update the probabilities.  This takes
into account not just change in actual distance of one view
volume boundary from its successor, but also changes in
orientation. The particular scheme used is described in the
next section.

4. Implementation Heuristics

In this section we present some of the heuristics used for
the current implementation. First we consider the probability
scheme. Initially, each B[i,_] is assigned a probability of prob
= ρ, and  this is halved for each successive level. Let ∆dk =
dk+1 - dk. Then if prob is the current probability for a particular
cell, we use prob := prob*(1 - ∆dk/w) as the updating formula
(but clamped to the interval [0,1]). Hence when the distance
increases the probability of selection decreases, and vice
versa.

Next, the cells do not actually contain sets, but sequences,
and we do not actually do a random selection within a cell,
but start from the beginning of the sequence. For example, if
in cell B[i,j] there are Nij objects, and the probability is pij then
we take the first Nij×pij (ceiling) objects (so that always at
least one object is checked). When a selected object is
checked, it is moved to the tail of the sequence to which it has
been assigned. Hence, if it stays in the same cell, it is simply
moved to the back of that cell.

This has several potential advantages: First, there is not the
computational overhead involved in “random selection from a
set”. Next, there is no special reason to suppose (initially) that
the first object assigned to a cell is special in any sense in
terms of its relationship to the clip region boundaries,
compared to any other object in that cell - so the first might as
well be selected. Third, there is also a possible “principle of
locality” that is being exploited here - it is likely that in scene
construction objects are not defined in arbitrary order, but that
there is some organisation to the construction. Hence this
scheme may exploit the fact that whatever happens to one
object is likely to happen to its neighbour in any
representation scheme.

Finally, if it is found that the last object checked in a
sequence has changed, then we continue to check along the
sequence beyond Nij×pij, until the first non-changed object is
encountered, or the end of the sequence is reached.

5. A BSP Tree Implementation

The most natural implementation of this algorithm is in the
context of a Z-buffer visibility algorithm. In fact this is the
version of the algorithm discussed above, apart from one
problem. For the algorithm to be most effective, clearly
objects in set I should be rendered without any clipping, with
clipping only used for objects in B. Systems such as OpenGL
do not support such a possibility - for clipping to the view
frustum is always enabled. Moreover, it is not possible in the

context of such standard rendering systems to perform special
purpose operations - such as not actually clipping an object
but at least checking if any of its vertices are outside the clip
boundaries. Of course this can be implemented, but the
implementation cannot make use of the renderer, so that much
of what the renderer does has to be duplicated.

Our initial implementation was, therefore, in a more
challenging environment, that is, in the context of a Binary
Space Partition (BSP) tree visibility algorithm (Fuchs, Kedem
and Naylor, 1980; Fuchs, Abram and Grant, 1983). A BSP
tree may be constructed by choosing a root polygon, and using
its (oriented) plane to form a partition of all other polygons in
the scene into three subsets: those on the “front” side of the
root, those on the “back” side, and those on the same plane as
the root. Polygons that intersect the root plane are split and
assigned appropriately. The subdivision process is then
applied recursively to each of the front and back sets. The
BSP tree allows a back-to-front ordered display of the
polygons in the scene: for any subtree, if the viewpoint is in
the front half-space defined by the plane of the root then
display the subtree referenced by the back child, then render
the polygons at the root, and finally display the subtree
referenced by the front child. If the viewpoint is in the back
half-space, then first display the front subtree, then the root
node, and then the back subtree.

The VV culling algorithm operates at the level of objects
(i.e., polyhedra) rather than individual polygons. However,
each polygon maintains a reference to the object to which it
belongs. Therefore, when a polygon is encountered during
traversal of the tree while  producing a new frame, its
corresponding object can be accessed. The object stores
information about its visibility status - whether it is in the
completely visible region, the boundary region, or in the
invisible region (i.e., one of the cells). If the polygon is in the
invisible region, it is not rendered. If it is in the visible region,
it is rendered without clipping, but during this process there is
a simple check to determine whether it should be clipped. If it
is in the boundary region, it is rendered with clipping, and as a
result there would be information about whether or not it was
actually clipped by the boundary.

It is not so straightforward as described, however. Suppose
that a polygon is in the boundary region, it is rendered and
clipped, and the clipping determines that its status has
changed (it is now completely inside, or completely outside).
At this time the object status cannot be changed, for there may
be subsequent polygons in the BSP tree belonging to this
object. In order to determine whether or not the entire object
has been processed while traversing the tree, each object also
maintains an identification number (PIN), and there is a PIN
also associated with each frame. Initially, all objects have the
same PIN as the first frame. The frame PIN is incremented
with each successive frame. When an object is encountered
that has a different PIN from the frame PIN, this indicates that
it is the first time that this object has been encountered for the
current frame (in other words all of its polygons would have
been processed during the previous frame).

Table 1
Updating the visible and invisible flags associated with an

Object: Results of Clipping an Individual Polygon

Completely
Outside

Intersected by
Boundary

Completely
Inside

visible = false visible = false visible && = true
invisible &&= true invisible = false invisible = false

Two boolean flags are stored for each object. The first is
called “invisible”, which has the value true if and only if all
polygons so far processed for this object have been in the
invisible region. The second is called “visible”, which has the



value true, if and only if all polygons so far processed have
been in the visible region. Both are initially set to true. The
method for updating these flags is shown in Table 1.

Suppose all polygons of an object in the boundary region
had been in the visible region - then visible would have the
value true, invisible would have the value false, and the object
may be reassigned to the completely visible region (I). If all
polygons were in the invisible region, then visible would have
the value false, and invisible would have the value true, and
the object may be reassigned to one of the cells in the
invisible region. Finally, if some polygons were visible, and
some invisible, so that, of course, some would also be
intersected by the boundary, then both flags would return
false. In this case the polygon would be displayed with
clipping, and the object would remain in the boundary region.

In fact, for the BSP tree implementation there is no need to
keep an explicit set corresponding to the boundary region,
since all objects are in any case visited (though obviously not
necessarily rendered) during traversal of the tree. In one
sense, since all polygons are “touched” during traversal of the
tree, this does not represent the ideal for a VV culling
algorithm - which should only consider at all objects in the
visible and boundary set.

6. Results

The BSP tree version of the algorithm was tested in order
to obtain information about two aspects of performance: first,
the extent of the error which the algorithm produces, and
second, its time performance compared with the hierarchical
bounding box approach.

A test scene (S1) was a representation of a laboratory in the
Computer Science Department at UCL. This consisted of 307
objects composed of 11,752 initial faces, and the size of the
corresponding BSP tree was 23,648 faces. (The tree was
constructed using Fuch’s method as described in (Fuchs,
Abram and Grant, 1983)). A random walkthrough was
constructed by pre-selecting a sequence of points (uniformly)
at random inside the overall bounding box of the scene, and
the camera moved in small increments along the straight lines
joining successive points, with its view plane normal vector
corresponding to the direction of the line segment. At the end
of such a line segment, the camera would interpolate through
the angle between the previous line segment direction and the
next, so that once again, its view plane normal vector would
face along the current line segment. So the simulation
consisted of the camera flying around the scene (translating
and rotating) much as a virtual reality observer might fly
around such a scene.

There were 588 such camera updates, and therefore frames,
altogether, so that the total number of frame-polygons
involved was 588 × 23648 = 13,905,024.

Table 2
Number of Polygons Processed

Polygons
Processed

Frequency
S1

S1
%

Frequency
S2

S2
%

Displayed
without
clipping

627,258 34 1,440,015 49

Displayed
with
clipping

1,220,648 66 1,524,831 51

Total 1,847,906 100 2,964,846 100

Number
Processed

1,847,906 13.3 2,964,846 15.3

Overall
total

13,905,024 100 19,394,550 100

A second test scene (S2) consisted of a two layers of this
laboratory, one on top of the other. This had 23,448 initial
faces and 45.850 in the BSP tree. For the second animation
the number of frames was 423, and the total number of frame-
polygons was 19,394,550.

Table 2 shows the overall results. Out of the total number
of frame-polygons, only 13% and 15% were actually passed
down the viewing pipeline (i.e., rendered with or without
clipping). Table 3 considers only those polygons that were
clipped. Approximately one quarter of these turned out to be
completely inside the view volume, whereas approximately 10
per cent intersected the boundary.

Table 3
Classification of Clipped Polygons

Clipped
Polygons

Frequency
S1

S1
%

Frequency
S2

S2
%

Completely
visible

285,382 23 440975 29

Completely
invisible

830,771 68 935749 61

Intersecting
boundary

104,495 9 148107 10

Total
clipped

1,220,648 100 1,524,831 100

Table 4
Error Rates

Category of
Error

Frequency
S1

%
total
S1

Frequency
S2

%
total
S2

Incorrectly
not clipped

7,519 0.05 7,519 0.04

Visible but
not displayed

32,542 0.23 32,542 0.17

Unnecessarily
clipped

1,137,992 8.18 1,137,992 5.87

Table 4 shows error rates. The algorithm may clip
polygons unnecessarily (because they were completely outside
or completely inside the view volume). This was the largest
category of error, but also the “safest” error to make (since
the rendered scene is not incorrect if this occurs). The next
largest category, is more serious, that is where a polygon is
visible, but was not displayed at all. Finally, the case where a
polygon should have been clipped but was not, was the
category of error that occurred the least.

An attempt has been made to calibrate the algorithm with
respect to the parameters:

• k - the multiplier used to measure distance µD - k.σD (for
these results k = 1.5);

• ρ - the initial selection probability assigned to each
boundary (here 0.1 was used);

• w - the width of each cell (5 times the camera step
distance);

• L - the number of levels for each boundary (L=10).

Trial and error indicated that a value of k of about 2 gives
good results amongst a number of object shapes, where by
inspection, the ellipsoid approximating the object fitted the
object. The above experimental data used a value of k = 1.5,
which provides too small an approximation for many shapes.
However, this ellipsoid approximation is not accurate where
there is an uneven distribution of vertices around the object -
in this case the density is distributed closer to the region of
the greatest density of vertices. This was pointed out by



(Gottschalk, Lin, and Manocha, 1996) who attempted to
improve this situation for their oriented bounding box
approximation by evening out the data distribution. In the
context of collision detection this is important, but less
important for VV culling - where anyway the scheme is
probabilistic for rapid walkthrough. However, this is an area
where, after the event, we have realised that an alternative
scheme could be used. This would involve making a direct
estimation of the best fitting ellipsoid that covers all or most
of the vertices, and then using this ellipsoid to derive the
mean and covariance matrix for the object. Unlike the case of
real statistical estimation, we are not interested in the ‘true’
mean and covariance matrix of the object distribution (which
anyway is only a fiction) but in using an idealised
representation  that has useful properties for rapid
computation. We are investigating this alternative approach at
the time of writing, which should further reduce the error
rates (which are already very small).

We carried out a multiple regression analysis to examine
the influence of the parameters ρ, w and L. The design had all
27 combinations of three levels of each of the parameters, ρ
(= 1/9, 1/3, 1/2), w = (1, 2, 5) times the camera step distance,
L = (5, 10, 20). There was no significant influence of any of
these three parameters over the overall time performance of
the algorithm. However, w and L (but not ρ) were highly
statistically significant with respect to the error rate, in the
case of both those incorrectly not clipped, and those
incorrectly not displayed. In each case, over the range of data
considered, the error rate was linearly and negatively
correlated with both w and L, though L always the most
significant. (In each case the square of the correlation
coefficient, that is, the variation in the error rate explained by
the linear model, was approximately 80%).

Table 5
Profile Times for the Hierarchical Bounding Box

and Probabilistic Culling Algorithms

S1
Bounding Box Probabilistic

Overall Time 137s 89s
No. of times clip
called

2,580,314 1,224,708

S2
Bounding Box Probabilistic

Overall Time 232s 139s
No. of times clip
called

2,470,686 1,541,888

Table 5 shows the comparative timings, of two culling
algorithms, the hierarchical bounding box, and the
probabilistic culling algorithm. The time is the total time for
the scene walkthrough, but excluding actual rendering time
(the rendering occurred on an X11 server running as a
separate process). The profiling was carried out on a SUN
Ultra 2 UPA/SBus (2 X UltraSPARC 168mhz) with 192M
available memory, under  SunOS Release 5.5.1. The table also
shows the number of calls to the clip function generated by
the two algorithms. The new algorithm, for these particular
scenes and these implementations completes the animation in
about 60-65% of the time of the bounding box method, and
with about 50-60% of the calls to the main clip function.
However, it is to be emphasised that these are results, for one
type of scene only, and one set of parameters controlling the
operation of the new algorithm.

7. Conclusions

This paper has introduced a new approach to view volume
culling - a method that attempts to reduce the amount of
unnecessary computation involved in clipping objects - which
are anyway completely visible or invisible. It achieves this by
maintaining a series of object caches, sets of objects that are
likely to be completely outside the view volume, and which
are probabilistically sampled at each new frame. The
probabilities are inversely proportional to the distance of the
regions corresponding to the caches from the current view
volume.

A statistical representation is used for objects, which
although approximate, captures the locality, spread and
orientation of an object. This statistical representation is
suitable also for rapid updating when objects are transformed,
and may be used as a basis for computing a “distance”
measure of an object from a clipping boundary plane.
Moreover, an object can be represented by just nine floating
point numbers (the mean and covariance matrix). This
statistical method is, moreover, somewhat independent of the
form of actual representation of objects - for example, it could
equally well be used on B-Spline control points as on vertices
of polyhedra.

The overall philosophy of the algorithm borrows from
memory hierarchy in computer architecture - it employs
temporal locality, in that objects are partitioned into sets
which tend to remain constant from frame to frame. It
achieves spatial locality with respect to polygons, since the
scheme is object based - so that whatever computation is
appropriate for one polygon, is likely to be appropriate for its
neighbours (in the same polyhedra). It may also achieve an
additional degree of spatial locality through the particular
sampling scheme employed (where when an object is moved
from one cell to another, its neighbour in the sequence is also
checked for a possible move).

The algorithm has been tested for  particular scene
walkthroughs, and the results are encouraging. For these
scenes it is significantly faster than the hierarchical bounding
box method. Further work is continuing on estimation of a
good mean and covariance matrix representation of objects,
using an ellipsoid fitting method from which these parameters
can be derived.
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Figure 1 - Bivariate Gaussian Distribution
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Figure 2 - Samples on Bivariate Gaussian
Observation Density Decreases Towards the Periphery
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Figure 3 - Points Outside the Clip Boundary
Point A is assigned to the bottom plane, and B to front.


