Preference-based Argumentation

Yannis Dimopoulos

Department of Computer Science University of Cyprus Nicosia, Cyprus

Joint work with Leila Amgoud (IRIT, Toulouse) and Pavlos Moraitis (Uni Paris 5)

General Argumentation

- 2 Preference-based Argumentation (PBA)
- Structural properties of PBA
 - 4 Computational properties of PBA

What is Argumentation?

 Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments

- Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments
- Argument = a reason / justification for some claim

- Argumentation = a reasoning model based on the construction, exchange and evaluation of **arguments**
- Argument = a reason / justification for some claim
- The core of an argument: Reasons + a claim
 - Reason: Because Tweety is a bird and birds fly
 - Claim: Tweety flies

- Argumentation = a reasoning model based on the construction, exchange and evaluation of **arguments**
- Argument = a reason / justification for some claim
- The core of an argument: Reasons + a claim
 - Reason: Because Tweety is a bird and birds fly
 - Claim: Tweety flies
- Argumentation can be used for:
 - Internal agent's reasoning
 - Modelling interactions between agents

What is an Argument?

• A set of premises in support of a conclusion/claim

What is an Argument?

- A set of premises in support of a conclusion/claim
- claim: Info I about John should be published because

What is an Argument?

- A set of premises in support of a conclusion/claim
- claim: Info I about John should be published because
- premise/reason:

John has political responsibilities and

 $\ensuremath{\mathcal{I}}$ is in the national interest and

if a person has pol. resp. and info about that person is in the national interest then that info should be published

• The process of argument construction, exchange and evaluation in light of their interactions with other arguments

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)
- A2 (John does not have pol. resp. because he resigned from parliament, and if a person resigns...)

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)
- A2 (John does not have pol. resp. because he resigned from parliament, and if a person resigns...)
- A3 (John does have pol. resp. because he is now middle east envoy, and if a person...)

• Δ is a set of propositional logic formulae

•
$$Args = \{(H, h) | H \subseteq \Delta \text{ is consistent}$$

 $H \vdash h$
 $H \text{ is minimal} \}$

• Δ is a set of propositional logic formulae

•
$$Args = \{(H, h) | H \subseteq \Delta \text{ is consistent}$$

 $H \vdash h$
 $H \text{ is minimal} \}$

• (H_1, h_1) and (H_2, h_2) rebut each other iff $h_1 \equiv \neg h_2$

Δ is a set of propositional logic formulae

•
$$Args = \{(H, h) | H \subseteq \Delta \text{ is consistent}$$

 $H \vdash h$
 $H \text{ is minimal} \}$

- (H_1, h_1) and (H_2, h_2) rebut each other iff $h_1 \equiv \neg h_2$
- (H_1, h_1) undercuts (H_2, h_2) iff $h_1 \equiv \neg h$ for some $h \in H_2$

•
$$\Delta = \{ nat, pol, nat \land pol \rightarrow pub, res, res \rightarrow \neg pol, mid, mid \rightarrow pol \}$$

•
$$\Delta = \{ nat, pol, nat \land pol \rightarrow pub, res, res \rightarrow \neg pol, mid, mid \rightarrow pol \}$$

• $A_1 = (\{nat, pol, nat \land pol \rightarrow pub\}, pub)$

•
$$\Delta = \{ nat, pol, nat \land pol \rightarrow pub, res, res \rightarrow \neg pol, mid, mid \rightarrow pol \}$$

•
$$A_1 = (\{nat, pol, nat \land pol \rightarrow pub\}, pub)$$

•
$$A_2 = (\{res, res \rightarrow \neg pol\}, \neg pol\}$$

 $A_2 \rightsquigarrow A_1$

•
$$\Delta = \{ nat, pol, nat \land pol \rightarrow pub, res, res \rightarrow \neg pol, mid, mid \rightarrow pol \}$$

•
$$A_1 = (\{nat, pol, nat \land pol \rightarrow pub\}, pub)$$

•
$$A_2 = (\{res, res \rightarrow \neg pol\}, \neg pol)$$

 $A_2 \rightsquigarrow A_1$

•
$$A_3 = (\{mid, mid \rightarrow pol\}, pol)$$

 $A_3 \iff A_2$

- An argumentation theory is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$ where:
 - A = a set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ = an attack relation between arguments

- An argumentation theory is a pair $\langle A, \mathcal{R} \rangle$ where:
 - A = a set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ = an attack relation between arguments
- For $a, b \in A$, a attacks b if $(a, b) \in R$

- An argumentation theory is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$ where:
 - A = a set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ = an attack relation between arguments
- For $a, b \in A$, a attacks b if $(a, b) \in R$

Example

- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican

- An argumentation theory is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$ where:
 - A = a set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ = an attack relation between arguments
- For $a, b \in A$, a attacks b if $(a, b) \in R$

Example

- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican
 - \implies two arguments:
 - a : Nixon is a pacifist since he is a Quaker
 - b : Nixon is not a pacifist since he is a Republican

- An argumentation theory is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$ where:
 - A = a set of arguments
 - $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ = an attack relation between arguments
- For $a, b \in A$, a attacks b if $(a, b) \in R$

Example

- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican

\implies two arguments:

- a : Nixon is a pacifist since he is a Quaker
- b : Nixon is not a pacifist since he is a Republican

$$a \leftrightarrow b$$

- Let $\mathcal{B} \subseteq \mathcal{A}$.
 - \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$

- Let $\mathcal{B} \subseteq \mathcal{A}$.
 - \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
 - B defends an argument a iff ∀ b ∈ A, if (b, a) ∈ R, then ∃ c ∈ B such that (c, b) ∈ R

- Let $\mathcal{B} \subseteq \mathcal{A}$.
 - \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
 - B defends an argument a iff ∀ b ∈ A, if (b, a) ∈ R, then ∃ c ∈ B such that (c, b) ∈ R
- For instance:

$$c \longrightarrow b \longrightarrow a$$

- Let $\mathcal{B} \subseteq \mathcal{A}$.
 - \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
 - B defends an argument a iff ∀ b ∈ A, if (b, a) ∈ R, then ∃ c ∈ B such that (c, b) ∈ R
- For instance:

$$c \longrightarrow b \longrightarrow a$$

The set {c} is conflict-free and defends a

- Let $\mathcal{B} \subseteq \mathcal{A}$.
 - \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
 - B defends an argument a iff ∀ b ∈ A, if (b, a) ∈ R, then ∃ c ∈ B such that (c, b) ∈ R
- For instance:

$$c \longrightarrow b \longrightarrow a$$

The set {c} is conflict-free and defends a
The sets {a, b}, {b, c} and {a, b, c} are **not** conflict-free

- B is conflict-free
- \bigcirc \mathcal{B} defends all its elements

- $\bigcirc \mathcal{B}$ is conflict-free
- \bigcirc \mathcal{B} defends all its elements
- Example (Nixon Cont.)

$$a \leftrightarrow b$$

- B is conflict-free
- \bigcirc \mathcal{B} defends all its elements
- Example (Nixon Cont.)

 $a \leftrightarrow b$

• \emptyset , $\{a\}$, $\{b\}$ are admissible extensions

- B is conflict-free
- \bigcirc \mathcal{B} defends all its elements
- Example (Nixon Cont.)

 $a \leftrightarrow b$

- Ø, {*a*}, {*b*} are admissible extensions
- {*a*, *b*} is not an admissible extension

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
 - B is conflict-free
 - 2 \mathcal{B} attacks any argument in $\mathcal{A} \setminus \mathcal{B}$

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
 - B is conflict-free
 - 2 \mathcal{B} attacks any argument in $\mathcal{A} \setminus \mathcal{B}$
- Example (Nixon Cont.)

 $a \leftrightarrow b$

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
 - B is conflict-free
 - 2 \mathcal{B} attacks any argument in $\mathcal{A} \setminus \mathcal{B}$
- Example (Nixon Cont.)

$$a \leftrightarrow b$$

- {*a*}, {*b*} are stable extensions
- \emptyset , $\{a, b\}$ are not stable extensions

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
 - B is conflict-free
 - 2 \mathcal{B} attacks any argument in $\mathcal{A} \setminus \mathcal{B}$
- Example (Nixon Cont.)

 $a \leftrightarrow b$

- {*a*}, {*b*} are stable extensions
- Ø, {a, b} are not stable extensions
- A kernel of a (di)graph G = (V, E) is a set K ⊆ V such that
 ∀v_i, v_j ∈ K it holds that (v_i, v_j) ∉ E and (v_j, v_i) ∉ E
 - $\forall v_i \notin K, \exists v_j \in K \text{ such that } (v_j, v_i) \in E$

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
 - B is conflict-free
 - 2 \mathcal{B} attacks any argument in $\mathcal{A} \setminus \mathcal{B}$
- Example (Nixon Cont.)

 $a \leftrightarrow b$

- {*a*}, {*b*} are stable extensions
- \emptyset , $\{a, b\}$ are not stable extensions
- A kernel of a (di)graph G = (V, E) is a set K ⊆ V such that
 ∀v_i, v_j ∈ K it holds that (v_i, v_j) ∉ E and (v_j, v_i) ∉ E
 - $\forall v_i \notin K, \exists v_j \in K \text{ such that } (v_j, v_i) \in E$
- Introduced by Von Neumann and Morgenstern in 1944

Stable extensions of *T* correspond exactly to the kernels of the associated graph *G_T* (Dimopoulos+Torres 1996)

- Stable extensions of *T* correspond exactly to the kernels of the associated graph *G_T* (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...

- Stable extensions of *T* correspond exactly to the kernels of the associated graph *G_T* (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...
- ...or no kernels at all

- Stable extensions of *T* correspond exactly to the kernels of the associated graph *G_T* (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...
- ...or no kernels at all
- Reasoning with stable/admissible extensions is hard
 - Deciding the existence of stable extensions is NP-hard
 - Deciding the existence of an non-empty admissible extension is NP-hard

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

Example

Small cars have low running cost

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

- Small cars have low running cost
- Big cars are safe

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost
- Preferences present in previous works on argumentation But no systematic study

An extension of classical argumentation
 Basic Idea: We often have preferences over arguments

- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost
- Preferences present in previous works on argumentation But no systematic study
- This work: Study the properties of a specific Preference-based Argumentation Framework

- The attacking relation ${\mathcal R}$ is the combination of
 - A conflict relation, C, capturing incompatibility between arguments

- The attacking relation $\mathcal R$ is the combination of
 - A conflict relation, C, capturing incompatibility between arguments

 $a \succ b$ means $a \succeq b$ and $b \not\succeq a$

- The attacking relation ${\mathcal R}$ is the combination of
 - A conflict relation, C, capturing incompatibility between arguments

 $a \succ b$ means $a \succeq b$ and $b \not\succeq a$

• \mathcal{C} is assumed irreflexive and symmetric

- The attacking relation ${\mathcal R}$ is the combination of
 - A conflict relation, C, capturing incompatibility between arguments

 $a \succ b$ means $a \succeq b$ and $b \not\succeq a$

- $\bullet \ \mathcal{C}$ is assumed irreflexive and symmetric

- The attacking relation ${\mathcal R}$ is the combination of
 - A conflict relation, C, capturing incompatibility between arguments

 $a \succ b$ means $a \succeq b$ and $b \not\succeq a$

- C is assumed irreflexive and symmetric
 - \succeq is assumed reflexive and transitive, i.e. a pre-order
- A Preference-based Argumentation Theory (PBAT) is a pair (A, R):
 - A = a set of arguments
 - $(a,b) \in \mathcal{R}$ iff $(a,b) \in \mathcal{C}$ and $b \not\succ a$

Preference-based Argumentation - Example

•
$$A = \{a, b, c\}$$

Preference-based Argumentation - Example

• $\mathcal{A} = \{a, b, c\}$ • $\mathcal{C} = \{(a, b), (b, a)(a, c), (c, a)\}$ • $a \succ b, a \succ c$

• The (di)graph \mathcal{G}_T of a PBAT T has some useful properties

- The (di)graph \mathcal{G}_T of a PBAT T has some useful properties
 - Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges

- The (di)graph \mathcal{G}_T of a PBAT T has some useful properties
 - Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges
 - \mathcal{G}_T has no elementary cycle of length greater than 2

• The (di)graph \mathcal{G}_T of a PBAT T has some useful properties

- Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges
- G_T has no elementary cycle of length greater than 2

• Duchet, 1979: kernels always exist for certain classes of graphs

- The (di)graph \mathcal{G}_T of a PBAT T has some useful properties
 - Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges
 - G_T has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
 - Every PBAT has at least one stable extension

- The (di)graph \mathcal{G}_T of a PBAT T has some useful properties
 - Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges
 - G_T has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
 - Every PBAT has at least one stable extension
 - Every PBAT is coherent
 - i.e. stable and maximal admissible extensions coincide

- The (di)graph \mathcal{G}_T of a PBAT T has some useful properties
 - Every cycle of $\mathcal{G}_{\mathcal{T}}$ has at least two symmetric edges
 - G_T has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
 - Every PBAT has at least one stable extension
 - Every PBAT is coherent
 - i.e. stable and maximal admissible extensions coincide
- All results are based on transitivity

- For A_1 , A_2 set of arguments, $A_1 \triangleright A_2$ iff
 - $A_1 \supset A_2$, or
 - $\forall a, b$ with $a \in A_1 \setminus A_2$ and $b \in A_2 \setminus A_1$, it holds that $a \succ b$

- For A_1 , A_2 set of arguments, $A_1 \triangleright A_2$ iff
 - $A_1 \supset A_2$, or
 - $\forall a, b$ with $a \in A_1 \setminus A_2$ and $b \in A_2 \setminus A_1$, it holds that $a \succ b$
- stable extensions = most preferred sets wrt \triangleright permitted by C

Preferences on sets on arguments - Example

Preferences on sets on arguments - Example

Preferences on sets on arguments - Example

Preferences on sets on arguments - Example

• {a} is the unique stable extension

• A stable extension of a PBAT can be computed in polynomial time

• A stable extension of a PBAT can be computed in polynomial time

- General Idea of the algorithm:
 - Start from a top component
 - Find an argument that defends itself against all its attackers
 - Add the argument to the stable extension and simplify
 - Repeat on the remaining theory

• A stable extension of a PBAT can be computed in polynomial time

- General Idea of the algorithm:
 - Start from a top component
 - Find an argument that defends itself against all its attackers
 - Add the argument to the stable extension and simplify
 - Repeat on the remaining theory

• Key property: There always exists a "self-defending" argument

Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

• Why

- Complex interaction between arguments
- Must find the right combination of other arguments

Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

• Why

- Complex interaction between arguments
- Must find the right combination of other arguments
- Deciding whether a is included in every stable extension is co-NP-hard

Theories without incomparability

Reasoning becomes a bit easier if there is no incomparability

Reasoning becomes a bit easier if there is no incomparability
 i.e. there are no a, b ∈ A s.t. a ∠ b and b ∠ a

- Reasoning becomes a bit easier if there is no incomparability
 i.e. there are no a, b ∈ A s.t. a ∠ b and b ∠ a
- Key Properties
 - Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_T
 - Maximal Independent Sets can be computed with Polynomial Delay

- Reasoning becomes a bit easier if there is no incomparability
 i.e. there are no a, b ∈ A s.t. a ∠ b and b ∠ a
- Key Properties
 - Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_T
 - Maximal Independent Sets can be computed with Polynomial Delay
- The stable extensions can be computed with Polynomial Delay

- Reasoning becomes a bit easier if there is no incomparability
 i.e. there are no a, b ∈ A s.t. a ∠ b and b ∠ a
- Key Properties
 - Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_T
 - Maximal Independent Sets can be computed with Polynomial Delay
- The stable extensions can be computed with Polynomial Delay
- Exponential worst case behavior A theory with *n* arguments can have *n*^{*n*/3} stable extensions

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility
 - **Reservation value**
- Alternate Offers Protocol

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility

Reservation value

- Alternate Offers Protocol
- Characteristics of Negotiation
 Deadline?

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility

Reservation value

- Alternate Offers Protocol
- Characteristics of Negotiation
 - Deadline?
 - Can I accept an offer that I have previously rejected?
 - Issue by issue?

• Offers supported by arguments

Argument preference determines offer preference

Best offer is supported by the most preferred argument

• Performatives: *Propose*, *Argue*, *Reject*, *Agree*, *Nothing*, *Withdraw*....