Preference-based Argumentation

Yannis Dimopoulos

Department of Computer Science
University of Cyprus Nicosia, Cyprus

Joint work with Leila Amgoud (IRIT, Toulouse) and Pavlos Moraitis (Uni Paris 5)

Outline

(1) General Argumentation
(2) Preference-based Argumentation (PBA)
(3) Structural properties of PBA

44 Computational properties of PBA
(5) PBA and Negotiation

What is Argumentation?

- Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments

What is Argumentation?

- Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments
- Argument = a reason / justification for some claim

What is Argumentation?

- Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments
- Argument = a reason / justification for some claim
- The core of an argument: Reasons + a claim
- Reason: Because Tweety is a bird and birds fly
- Claim: Tweety flies

What is Argumentation?

- Argumentation = a reasoning model based on the construction, exchange and evaluation of arguments
- Argument = a reason / justification for some claim
- The core of an argument: Reasons + a claim
- Reason: Because Tweety is a bird and birds fly
- Claim: Tweety flies
- Argumentation can be used for:
- Internal agent's reasoning
- Modelling interactions between agents

What is an Argument?

- A set of premises in support of a conclusion/claim

What is an Argument?

- A set of premises in support of a conclusion/claim
- claim: Info \mathcal{I} about John should be published because

What is an Argument?

- A set of premises in support of a conclusion/claim
- claim: Info \mathcal{I} about John should be published because
- premise/reason:

John has political responsibilities and
\mathcal{I} is in the national interest and
if a person has pol. resp. and info about that person is in the national interest then that info should be published

What is Argumentation?

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments

What is Argumentation?

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)

What is Argumentation?

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)
- A2 (John does not have pol. resp. because he resigned from parliament, and if a person resigns...)

What is Argumentation?

- The process of argument construction, exchange and evaluation in light of their interactions with other arguments
- A1 (publish info about John because he has responsibilities...)
- A2 (John does not have pol. resp. because he resigned from parliament, and if a person resigns...)
- A3 (John does have pol. resp. because he is now middle east envoy, and if a person...)

Arguments in Propositional Logic

- Δ is a set of propositional logic formulae
- Args $=\{(H, h) \mid H \subseteq \Delta$ is consistent
$H \vdash h$
H is minimal $\}$

Arguments in Propositional Logic

- Δ is a set of propositional logic formulae
- Args $=\{(H, h) \mid H \subseteq \Delta$ is consistent $H \vdash h$
H is minimal $\}$
- $\left(H_{1}, h_{1}\right)$ and $\left(H_{2}, h_{2}\right)$ rebut each other iff $h_{1} \equiv \neg h_{2}$

Arguments in Propositional Logic

- Δ is a set of propositional logic formulae
- Args $=\{(H, h) \mid H \subseteq \Delta$ is consistent $H \vdash h$
H is minimal $\}$
- $\left(H_{1}, h_{1}\right)$ and $\left(H_{2}, h_{2}\right)$ rebut each other iff $h_{1} \equiv \neg h_{2}$
- $\left(H_{1}, h_{1}\right)$ undercuts $\left(H_{2}, h_{2}\right)$ iff $h_{1} \equiv \neg h$ for some $h \in H_{2}$

Arguments in Propositional Logic

- $\Delta=\{$ nat, pol, nat \wedge pol \rightarrow pub, res, res $\rightarrow \neg$ pol, mid, mid \rightarrow pol\}

Arguments in Propositional Logic

- $\Delta=\{$ nat, pol, nat \wedge pol \rightarrow pub, res, res $\rightarrow \neg$ pol, mid, mid \rightarrow pol\}
- $A_{1}=(\{n a t, p o l$, nat $\wedge p o l \rightarrow p u b\}, p u b)$

Arguments in Propositional Logic

- $\Delta=\{$ nat, pol, nat \wedge pol \rightarrow pub, res, res $\rightarrow \neg$ pol, mid, mid \rightarrow pol\}
- $A_{1}=(\{n a t, p o l, n a t \wedge p o l \rightarrow p u b\}, p u b)$
- $A_{2}=(\{$ res, res $\rightarrow \neg p o l\}, \neg p o l)$

$$
A_{2} \rightsquigarrow A_{1}
$$

Arguments in Propositional Logic

- $\Delta=\{$ nat, pol, nat \wedge pol \rightarrow pub, res, res $\rightarrow \neg$ pol, mid, mid \rightarrow pol\}
- $A_{1}=(\{n a t, p o l, n a t \wedge p o l \rightarrow p u b\}, p u b)$
- $A_{2}=(\{r e s$, res $\rightarrow \neg p o l\}, \neg p o l)$
$A_{2} \rightsquigarrow A_{1}$
- $A_{3}=(\{$ mid, mid $\rightarrow p o l\}, p o l)$
$A_{3} \leadsto A_{2}$

Abstract argumentation theories (Dung 1995)

- An argumentation theory is a pair $\langle\mathcal{A}, \mathcal{R}\rangle$ where:
- $\mathcal{A}=$ a set of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}=$ an attack relation between arguments

Abstract argumentation theories (Dung 1995)

- An argumentation theory is a pair $\langle\mathcal{A}, \mathcal{R}\rangle$ where:
- $\mathcal{A}=\mathrm{a}$ set of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}=$ an attack relation between arguments
- For $a, b \in \mathcal{A}$, a attacks b if $(a, b) \in \mathcal{R}$

Abstract argumentation theories (Dung 1995)

- An argumentation theory is a pair $\langle\mathcal{A}, \mathcal{R}\rangle$ where:
- $\mathcal{A}=\mathrm{a}$ set of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}=$ an attack relation between arguments
- For $a, b \in \mathcal{A}$, a attacks b if $(a, b) \in \mathcal{R}$
- Example
- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican

Abstract argumentation theories (Dung 1995)

- An argumentation theory is a pair $\langle\mathcal{A}, \mathcal{R}\rangle$ where:
- $\mathcal{A}=\mathrm{a}$ set of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}=$ an attack relation between arguments
- For $a, b \in \mathcal{A}$, a attacks b if $(a, b) \in \mathcal{R}$
- Example
- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican
\Longrightarrow two arguments:
- a : Nixon is a pacifist since he is a Quaker
- b : Nixon is not a pacifist since he is a Republican

Abstract argumentation theories (Dung 1995)

- An argumentation theory is a pair $\langle\mathcal{A}, \mathcal{R}\rangle$ where:
- $\mathcal{A}=$ a set of arguments
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}=$ an attack relation between arguments
- For $a, b \in \mathcal{A}$, a attacks b if $(a, b) \in \mathcal{R}$
- Example
- Usually, Quakers are pacifists
- Usually, Republicans are not pacifists
- Nixon is both a Quaker and a Republican
\Longrightarrow two arguments:
- a : Nixon is a pacifist since he is a Quaker
- b : Nixon is not a pacifist since he is a Republican

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics
- Let $\mathcal{B} \subseteq \mathcal{A}$.
- \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics
- Let $\mathcal{B} \subseteq \mathcal{A}$.
- \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
- \mathcal{B} defends an argument a iff $\forall b \in \mathcal{A}$, if $(b, a) \in \mathcal{R}$, then $\exists c \in \mathcal{B}$ such that $(c, b) \in \mathcal{R}$

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics
- Let $\mathcal{B} \subseteq \mathcal{A}$.
- \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
- \mathcal{B} defends an argument a iff $\forall b \in \mathcal{A}$, if $(b, a) \in \mathcal{R}$, then $\exists c \in \mathcal{B}$ such that $(c, b) \in \mathcal{R}$
- For instance:

$$
c \longrightarrow b \longrightarrow a
$$

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics
- Let $\mathcal{B} \subseteq \mathcal{A}$.
- \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
- \mathcal{B} defends an argument a iff $\forall b \in \mathcal{A}$, if $(b, a) \in \mathcal{R}$, then $\exists c \in \mathcal{B}$ such that $(c, b) \in \mathcal{R}$
- For instance:

$$
c \longrightarrow b \longrightarrow a
$$

- The set $\{c\}$ is conflict-free and defends a

Abstract argumentation theories

- Which arguments to accept together? \Longrightarrow acceptability semantics
- Let $\mathcal{B} \subseteq \mathcal{A}$.
- \mathcal{B} is conflict-free iff $\nexists a, b \in \mathcal{B}$ such that $(a, b) \in \mathcal{R}$
- \mathcal{B} defends an argument a iff $\forall b \in \mathcal{A}$, if $(b, a) \in \mathcal{R}$, then $\exists c \in \mathcal{B}$ such that $(c, b) \in \mathcal{R}$
- For instance:

$$
c \longrightarrow b \longrightarrow a
$$

- The set $\{c\}$ is conflict-free and defends a
- The sets $\{a, b\},\{b, c\}$ and $\{a, b, c\}$ are not conflict-free

Admissible extensions

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is an admissible extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} defends all its elements

Admissible extensions

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is an admissible extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} defends all its elements
- Example (Nixon Cont.)

Admissible extensions

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is an admissible extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} defends all its elements
- Example (Nixon Cont.)

$$
a \longleftrightarrow b
$$

- $\emptyset,\{a\},\{b\}$ are admissible extensions

Admissible extensions

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is an admissible extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} defends all its elements
- Example (Nixon Cont.)

- $\emptyset,\{a\},\{b\}$ are admissible extensions
- $\{a, b\}$ is not an admissible extension

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} attacks any argument in $\mathcal{A} \backslash \mathcal{B}$

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} attacks any argument in $\mathcal{A} \backslash \mathcal{B}$
- Example (Nixon Cont.)

$$
a \longleftrightarrow b
$$

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} attacks any argument in $\mathcal{A} \backslash \mathcal{B}$
- Example (Nixon Cont.)

$$
a \longleftrightarrow b
$$

- $\{a\},\{b\}$ are stable extensions
- $\emptyset,\{a, b\}$ are not stable extensions

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} attacks any argument in $\mathcal{A} \backslash \mathcal{B}$
- Example (Nixon Cont.)

$$
a \longleftrightarrow b
$$

- $\{a\},\{b\}$ are stable extensions
- $\emptyset,\{a, b\}$ are not stable extensions
- A kernel of a (di)graph $G=(V, E)$ is a set $K \subseteq V$ such that
- $\forall v_{i}, v_{j} \in K$ it holds that $\left(v_{i}, v_{j}\right) \notin E$ and $\left(v_{j}, v_{i}\right) \notin E$
- $\forall v_{i} \notin K, \exists v_{j} \in K$ such that $\left(v_{j}, v_{i}\right) \in E$

Stable extensions and graph kernels

- Let $\mathcal{B} \subseteq \mathcal{A}$. \mathcal{B} is a stable extension iff
(1) \mathcal{B} is conflict-free
(2) \mathcal{B} attacks any argument in $\mathcal{A} \backslash \mathcal{B}$
- Example (Nixon Cont.)

$$
a \longleftrightarrow b
$$

- $\{a\},\{b\}$ are stable extensions
- $\emptyset,\{a, b\}$ are not stable extensions
- A kernel of a (di)graph $G=(V, E)$ is a set $K \subseteq V$ such that
- $\forall v_{i}, v_{j} \in K$ it holds that $\left(v_{i}, v_{j}\right) \notin E$ and $\left(v_{j}, v_{i}\right) \notin E$
- $\forall v_{i} \notin K, \exists v_{j} \in K$ such that $\left(v_{j}, v_{i}\right) \in E$
- Introduced by Von Neumann and Morgenstern in 1944

Stable extensions and graph kernels

- Stable extensions of T correspond exactly to the kernels of the associated graph \mathcal{G}_{T} (Dimopoulos+Torres 1996)

Stable extensions and graph kernels

- Stable extensions of T correspond exactly to the kernels of the associated graph \mathcal{G}_{T} (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...

Stable extensions and graph kernels

- Stable extensions of T correspond exactly to the kernels of the associated graph \mathcal{G}_{T} (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...
- ...or no kernels at all

Stable extensions and graph kernels

- Stable extensions of T correspond exactly to the kernels of the associated graph \mathcal{G}_{T} (Dimopoulos+Torres 1996)
- A graph may have one or many kernels...
- ...or no kernels at all
- Reasoning with stable/admissible extensions is hard
- Deciding the existence of stable extensions is NP-hard
- Deciding the existence of an non-empty admissible extension is NP-hard

Preference-based Argumentation

- An extension of classical argumentation Basic Idea: We often have preferences over arguments

Preference-based Argumentation

- An extension of classical argumentation Basic Idea: We often have preferences over arguments
- Example
- Small cars have low running cost

Preference-based Argumentation

- An extension of classical argumentation Basic Idea: We often have preferences over arguments
- Example
- Small cars have low running cost
- Big cars are safe

Preference-based Argumentation

- An extension of classical argumentation Basic Idea: We often have preferences over arguments
- Example
- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost

Preference-based Argumentation

- An extension of classical argumentation Basic Idea: We often have preferences over arguments
- Example
- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost
- Preferences present in previous works on argumentation But no systematic study

Preference-based Argumentation

- An extension of classical argumentation

Basic Idea: We often have preferences over arguments

- Example
- Small cars have low running cost
- Big cars are safe
- Safety is more important than running cost
- Preferences present in previous works on argumentation But no systematic study
- This work: Study the properties of a specific Preference-based Argumentation Framework

Abstract Preference-based Argumentation

- The attacking relation \mathcal{R} is the combination of
- A conflict relation, \mathcal{C}, capturing incompatibility between arguments
- A preference relation, \succeq, capturing the relative strength of arguments

Abstract Preference-based Argumentation

- The attacking relation \mathcal{R} is the combination of
- A conflict relation, \mathcal{C}, capturing incompatibility between arguments
- A preference relation, \succeq, capturing the relative strength of arguments

$$
a \succ b \text { means } a \succeq b \text { and } b \nsucceq a
$$

Abstract Preference-based Argumentation

- The attacking relation \mathcal{R} is the combination of
- A conflict relation, \mathcal{C}, capturing incompatibility between arguments
- A preference relation, \succeq, capturing the relative strength of arguments

$$
a \succ b \text { means } a \succeq b \text { and } b \nsucceq a
$$

- \mathcal{C} is assumed irreflexive and symmetric

Abstract Preference-based Argumentation

- The attacking relation \mathcal{R} is the combination of
- A conflict relation, \mathcal{C}, capturing incompatibility between arguments
- A preference relation, \succeq, capturing the relative strength of arguments

$$
a \succ b \text { means } a \succeq b \text { and } b \nsucceq a
$$

- \mathcal{C} is assumed irreflexive and symmetric \succeq is assumed reflexive and transitive, i.e. a pre-order

Abstract Preference-based Argumentation

- The attacking relation \mathcal{R} is the combination of
- A conflict relation, \mathcal{C}, capturing incompatibility between arguments
- A preference relation, \succeq, capturing the relative strength of arguments

$$
a \succ b \text { means } a \succeq b \text { and } b \nsucceq a
$$

- \mathcal{C} is assumed irreflexive and symmetric \succeq is assumed reflexive and transitive, i.e. a pre-order
- A Preference-based Argumentation Theory (PBAT) is a pair $\langle\mathcal{A}$, $\mathcal{R}\rangle$:
- $\mathcal{A}=$ a set of arguments
- $(a, b) \in \mathcal{R}$ iff $(a, b) \in \mathcal{C}$ and $b \nsucc a$

Preference-based Argumentation - Example

- $\mathcal{A}=\{a, b, c\}$

Preference-based Argumentation - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$

Preference-based Argumentation - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

Preference-based Argumentation - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges
- \mathcal{G}_{T} has no elementary cycle of length greater than 2

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges
- \mathcal{G}_{T} has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges
- \mathcal{G}_{T} has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
- Every PBAT has at least one stable extension

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges
- \mathcal{G}_{T} has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
- Every PBAT has at least one stable extension
- Every PBAT is coherent
i.e. stable and maximal admissible extensions coincide

The graph of PBATs

- The (di)graph \mathcal{G}_{T} of a PBAT T has some useful properties
- Every cycle of \mathcal{G}_{T} has at least two symmetric edges
- \mathcal{G}_{T} has no elementary cycle of length greater than 2
- Duchet, 1979: kernels always exist for certain classes of graphs
- From those (and other) results we obtain the following properties
- Every PBAT has at least one stable extension
- Every PBAT is coherent
i.e. stable and maximal admissible extensions coincide
- All results are based on transitivity

Preferences on sets of arguments

- From a preference relation on arguments (\succeq) to a preference relation on sets of arguments:

Preferences on sets of arguments

- From a preference relation on arguments (\succeq) to a preference relation on sets of arguments:
- For A_{1}, A_{2} set of arguments, $A_{1} \triangleright A_{2}$ iff
- $A_{1} \supset A_{2}$, or
- $\forall a, b$ with $a \in A_{1} \backslash A_{2}$ and $b \in A_{2} \backslash A_{1}$, it holds that $a \succ b$

Preferences on sets of arguments

- From a preference relation on arguments (\succeq) to a preference relation on sets of arguments:
- For A_{1}, A_{2} set of arguments, $A_{1} \triangleright A_{2}$ iff
- $A_{1} \supset A_{2}$, or
- $\forall a, b$ with $a \in A_{1} \backslash A_{2}$ and $b \in A_{2} \backslash A_{1}$, it holds that $a \succ b$
- stable extensions $=$ most preferred sets wrt \triangleright permitted by \mathcal{C}

Preferences on sets on arguments - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

Preferences on sets on arguments - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

Preferences on sets on arguments - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

Preferences on sets on arguments - Example

- $\mathcal{A}=\{a, b, c\}$
- $\mathcal{C}=\{(a, b),(b, a)(a, c),(c, a)\}$
- $a \succ b, a \succ c$
$b \succeq c, c \succeq b$

Preferences on sets on arguments - Example

- $\{a\}$ is the unique stable extension

Computing a Stable Extension is Easy

- A stable extension of a PBAT can be computed in polynomial time

Computing a Stable Extension is Easy

- A stable extension of a PBAT can be computed in polynomial time
- General Idea of the algorithm:
- Start from a top component
- Find an argument that defends itself against all its attackers
- Add the argument to the stable extension and simplify
- Repeat on the remaining theory

Computing a Stable Extension is Easy

- A stable extension of a PBAT can be computed in polynomial time
- General Idea of the algorithm:
- Start from a top component
- Find an argument that defends itself against all its attackers
- Add the argument to the stable extension and simplify
- Repeat on the remaining theory
- Key property: There always exists a "self-defending" argument

Goal Reasoning is Hard

- Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

Goal Reasoning is Hard

- Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

- Why
- Complex interaction between arguments
- Must find the right combination of other arguments

Goal Reasoning is Hard

- Deciding whether there is a stable extension that contains a is NP-hard

Reduction from 3SAT

- Why
- Complex interaction between arguments
- Must find the right combination of other arguments
- Deciding whether a is included in every stable extension is co-NP-hard

Theories without incomparability

- Reasoning becomes a bit easier if there is no incomparability

Theories without incomparability

- Reasoning becomes a bit easier if there is no incomparability
i.e. there are no $a, b \in \mathcal{A}$ s.t. $a \nsucceq b$ and $b \nsucceq a$

Theories without incomparability

- Reasoning becomes a bit easier if there is no incomparability i.e. there are no $a, b \in \mathcal{A}$ s.t. $a \nsucceq b$ and $b \nsucceq a$
- Key Properties
- Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_{T}
- Maximal Independent Sets can be computed with Polynomial Delay

Theories without incomparability

- Reasoning becomes a bit easier if there is no incomparability i.e. there are no $a, b \in \mathcal{A}$ s.t. $a \nsucceq b$ and $b \nsucceq a$
- Key Properties
- Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_{T}
- Maximal Independent Sets can be computed with Polynomial Delay
- The stable extensions can be computed with Polynomial Delay

Theories without incomparability

- Reasoning becomes a bit easier if there is no incomparability i.e. there are no $a, b \in \mathcal{A}$ s.t. $a \nsucceq b$ and $b \nsucceq a$
- Key Properties
- Correspondence between the stable extensions of T and Maximal Independent Sets of \mathcal{G}_{T}
- Maximal Independent Sets can be computed with Polynomial Delay
- The stable extensions can be computed with Polynomial Delay
- Exponential worst case behavior

A theory with n arguments can have $n^{n / 3}$ stable extensions

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility

Reservation value

- Alternate Offers Protocol

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility

Reservation value

- Alternate Offers Protocol
- Characteristics of Negotiation
- Deadline?

Negotiation

- Negotiation: search for a mutually acceptable agreement between two (or several agents) on one or more issues
- Offers ranked by their utility

Reservation value

- Alternate Offers Protocol
- Characteristics of Negotiation
- Deadline?
- Can I accept an offer that I have previously rejected?
- Issue by issue?

PBA and Negotiation

- Offers supported by arguments

Argument preference determines offer preference
Best offer is supported by the most preferred argument

- Performatives: Propose, Argue, Reject, Agree, Nothing, Withdraw....

