
Towards Self-Stabilizing Byzantine Fault Tolerance Based on
Randomization: Overview and Challenges*

Ioannis Marcoullis
Department of Computer Science

University of Cyprus
imarco01@ucy.ac.cy

1 Introduction

For over a decade the rising distributed ledger technology (with blockchain being the most prominent of its
flavors) has breathed new interest into Byzantine fault tolerance (BFT) research [1, 4, 35, 61, 89, 122, 124].
Especially the blockchain “rush” of the past recent years has driven researchers to invest effort into more
time, communication, energy-efficient distributed ledger solutions. Expectations are still high for the future
of this technology and the research field is mature but still far from being saturated. Given that BFT is in the
heart of distributed ledger protocols, the attested rejuvenation of BFT research is no stumper. Whilst several
Byzantine consensus approaches like proof of work, or proof of stake have appeared as novel in the field,
past experience in the Byzantine-tolerant state machine replication paradigm was also employed in ongoing
research.

Solutions following the more “traditional” BFT solutions have leveraged on both deterministic and ran-
domized solutions. The former depend on timing assumptions [3, 21, 37, 74, 124] and failure detection,
and the latter on randomization, both with the aim to bypass the landmark FLP impossibility result, which
shows that agreement in asynchrony is impossible in the presence of even a single failure [65]. Appending
the blocks of a blockchain in a commonly accepted order is equivalent to the task of BFT state machine repli-
cation [1, 122], and the blockchain protocols employed are based on solving consensus or atomic broadcast.

In a parallel line of work, some solutions seek to endow BFT with the fault tolerance property of self-
stabilization [53]. This property enables the automatic recovery of a system from any “illegal” (unantici-
pated) system state back to a state where it achieves its designed functionality [55]. Existing self-stabilizing
BFT protocols are deterministic, based either on timing assumptions [22] or on failure detection [56]. We
look into existing work on asynchronous BFT solutions employing randomization, as well as asynchronous
randomized Byzantine consensus and atomic broadcast as these can be leveraged towards state machine
replication. We move towards such randomized solutions because randomization is known to lead to sim-
pler algorithms, and allows the removal of timing assumptions that existed in previous works [105], [91,
p. xiv], [100, p. ix]. We also highlight potential challenges that could arise while constructing a self-
stabilizing BFT solution based on randomization.

*This survey was carried out during the fall of 2020 for the “Efficient Self-stabilizing Byzantine Fault Tolerance” project and it
was made possible by the ONISILOS post-doctoral scheme of the University of Cyprus. See https://www.cs.ucy.ac.cy/
essbft

1

imarco01@ucy.ac.cy
https://www.cs.ucy.ac.cy/essbft
https://www.cs.ucy.ac.cy/essbft


2 State Machine Replication

Fault-tolerance is a vital system property [64, 72, 85, 108]. This is not surprising since system failures,
whatever their source might be (power failures, hardware and software failures, communication interrup-
tions, DoS and other cyber-attacks), have already had severe repercussions on industries, services, and
governments. The commodity of fault-tolerance has thus seen major day-to-day gains [24, 25, 95] over the
past decades. A system designer who ignores today’s state-of-the-art in fault tolerance is paving the way to
utter failure.

A standard fault tolerance technique is redundancy [116]. Building systems that cater for redundancy,
namely keeping multiple copies of a distributed object, renders systems more robust by masking replica (or
processor) failures and provides availability and performance in the case of queries [47, 64, 117]. Neverthe-
less, redundancy is not a free dessert. Using it gives rise to an important problem; that of consistency: How
can the system retain consistency of state in every single replica when the distributed object is being changed
possibly concurrently? The user of a distributed system must be able to receive a consistent, up-to-date view
of the distributed object it is querying or processing. Replication [40] is a well-known and widely studied
paradigm in distributed computing to realize redundancy, i.e., to create multiple copies of a (possibly) dy-
namic object. The aim is to ensure that redundancy is leveraged towards masking failures and providing
availability, but not at the expense of the reliability of data, while also attempting to preserve performance
during replica updates [108]. There are several approaches, and, depending on the task, one may choose to
relax the need for strong consistency, for example, to achieve better performance and availability [23].

Several methods have been suggested over the years to retain the consistency of replicated objects. State
machine replication (SMR) [75, 110] is one of the most popular ones. It emulates the state transitions of
one replica—possibly of a leader also known as the primary or coordinator—in every other replica in the
system through the execution of the same commands, with the same input, on the same state variables, and
in the same order. There is a very long list of research papers on the topic from many years back. In the last
few years, though, a flavor of SMR tolerating malicious entities (also known as Byzantine Fault Tolerance -
BFT) became a hot topic. The reason? The rise of the Blockchain. Before we make the connection of SMR
to a blockchain, we first look into SMR under hostile environments.

3 Byzantine Fault Tolerance

The most severe type of failure in distributed computation is the arbitrary or“Byzantine” one [78], in which
some processors may act arbitrarily by not following the specified algorithm. This model abstracts the
“intentions” of the faulty components of the system. It includes both malicious agent actions, and non-
intentional faults like occasional communication failures causing packet corruption of outgoing data, or a
flickery power supply [117]. State machine replication in the presence of arbitrary faults is a long-studied
problem [37, 46] and solutions of it come under the name of Byzantine Fault Tolerance (BFT). The research
area is defined by two main impossibility results. The FLP [65] impossibility suggesting that asynchronous
agreement is impossible if a single failure is allowed, and Lamport et al.’s result [78] that agreement is
achievable (only in synchrony) if the processors that can act arbitrarily constitute less than a third of the
processors’ set.

Since then, several ways have been proposed to bypass the impossibilities for the general case [46].
Popular ways to do this, are to introduce some synchronism to the model and assume a known delay to the
system’s communication [63, 114]. Another way is to employ a failure detection mechanism [38], while
some works move on to modify the problem and ask for weaker guarantees [119]. Finally, a different

2



approach is to relax the requirement for a deterministic solution and use randomization [10], a direction that
we will further elaborate on in the sequel.

A seminal paper on BFT replication is Practical Byzantine Fault Tolerance (PBFT) by Castro and Liskov
[37]. Its main assumption to achieve Byzantine-tolerant replication is that the number of Byzantine proces-
sors, do not exceed one third of the complete processor cohort. Further, it requires a consistent initial state
and an unbounded local memory and access to cryptographic mechanisms to ensure that messages are not
forged. Do note that if any of these assumptions fail and lead to corruption of the local state, then the sys-
tem is likely to malfunction and fail to provide its safety guarantees. A series of similar works build on
PBFT, like the one by Cachin et al. [30] and Zyzzyva [74], or try to introduce other novel techniques to
achieve better performance like the Spinning algorithm with a rotating primary [121], BFT-SMART [21],
and ABSTRACT [12].

Two directions that can lead to BFT are to solve either Byzantine agreement/consensus or Byzantine
atomic broadcast. The first solves the problem of a set of correct processors agreeing (in the presence of
malicious entities) on a single value. This can be extended to agreement on several values and further
on a common order of delivery of several messages. The second approach is a message delivery protocol
guaranteeing that the same set of messages is either delivered to any correct processor in the system in the
same order or it is not delivered at all. The two approaches were shown to be equivalent [38, 90], although
their complexities may differ [6]. Because the FLP result was shown to hold for the Byzantine agreement,
then due to the equivalence the impossibility also holds for Byzantine atomic broadcast. Examples of papers
tackling Byzantine consensus is Byzantine Paxos [77] and Fast Byzantine Consensus [87]. A survey on
the topic can be found in [46]. Byzantine atomic broadcast is a well-researched topic [50, 106]. It is
commonplace to build atomic broadcast on top of a multi-value consensus protocol [44].

Distributed ledgers, a form of which is the blockchain, require some way of agreeing on a common
history of transactions (these being the blocks added to the blockchain) [1, 69, 102, 109, 122]. An efficient,
highly fault-tolerant SMR service can achieve this since it can leverage high availability and a high volume
of transactions. A blockchain system with low throughput and slow transaction processing is doomed to be
annihilated by high competition.

3.1 The connection: BFT and Blockchain

Currently, the Bitcoin cryptocurrency caters for (a very limited number of) 7 transactions per second. At
the same time the annual computing power to mine Bitcoin corresponds to a whopping 33.5 metric tons of
carbon dioxide equivalence [94]. Mining is generating proof of work, which is the mean by which the bitcoin
blockchain achieves Byzantine agreement on the order of blocks. The low number of transactions per second
and the high energy consumption in a society that strives to become greener have been a strong motive to
research other directions. Newer cryptocurrencies and other blockchain (and in general distributed ledger)
technologies, are seeking better, more economic, eco-friendly and scalable ways to build an immutable
transaction log [81, 89, 122]. BFT solutions are promising in providing this service.

BFT consensus is an integral part of these advances [1, 43] as explained before. BFT is employed, for
example, by the Hyperledger Fabric [31, 122]. Specifically, it uses the BFT-SMART [21] implementation.
HoneyBadgerBFT [89] guarantees tolerance of up to a third of malicious processors and a throughput of tens
of thousands of transactions per second in an asynchronous setting by building a novel atomic broadcast al-
gorithm. Hybrid approaches of BFT and of simpler crash-tolerant algorithms have emerged to improve
performance. Examples of this approach are XFT [81] and Tendermint [28]. The topic is hot and moving
fast, driven both by academic and industrial research [38, 39]. To our knowledge, most BFT-based protocols
assume some kind of assumptions on the synchrony of the system, beyond the standard liveness assump-

3



tion that messages are eventually delivered. Only those protocols that employ randomization do not need
additional synchrony assumptions. We review several works that require timing assumptions and look more
carefully at solutions employing randomization in the next subsection.

Hotstuff [124] is a BFT protocol for the partial synchrony model. It is proposed to be the first such
algorithm that is also linear in communication complexity and can achieve consensus within the actual
network delay (and not the maximum). The protocol proceeds in views (a monotonically increasing counter)
and each view has a leader. The state comprises of a tree whose nodes store the client’s requests and other
data related to the algorithm. Branches of the tree become committed when the leader collects votes from
a quorum of n − f processors approving the three phases of committing. A threshold signature scheme
generates the signed votes of the processors to generate an authenticator of the commit decision. The
authors then proceed to an interesting simplification of the first protocol to provide Chained HotStuff. In
this version of the algorithm, it is noted that the initial protocol had three phases that where similar. They,
thus, present a single generic view to replace these, where the second phase of a client request is actually
relayed to the processor of the next view.

SBFT [68] is a BFT service optimized for the executes of Ethereum EVM smart contracts of hundreds of
of replicas. It employs a message collector processor and threshold signatures to reduce the communication
cost. Asynchrony is assumed, but synchrony (distinguished as two different synchrony modes) is required
for liveness. The protocol has three phases (following the PBFT paradigm) and uses a primary to proceed
replication. Each view has different primary who collects requests from clients and bundles them and sends
them to the other replicas. Two rounds of signing requests (with threshold signatures) and sending them to a
collector replica are performed before the request is executed and the client is informed. View changes take
place upon timer expire or if the primary is shown as malicious by publicly verifiable proof. The evaluation
shows improvements over PBFT, and that optimizations induced on SBFT do indeed have effect. Finally,
experiments on real-life Ethereum smart contract executions are suggested to gain a tenfold speed-up (in
transactions per second).

Tendermint [28] is another round-based Byzantine consensus algorithm for the partially synchronous
model. It uses a gossip protocol for inter-process communication, and digital signatures for messages, such
us a processor can know who was the original sender of a message forwarded by any other processor. SMR
takes place by sequential instances of “validity predicate-based” consensus to decide upon each block. This
consensus protocol follows the usual agreement and termination properties that any two correct properties
decide on the same value and that all correct processes eventually decide. A third property, validity, holds
when a given predicate valid() is true. The protocol, rather than considering n to be the number of pro-
cessors, takes n to be the total voting power of processes in the system. In this sense, it is optimal as it
can tolerate the combined voting power of malicious processors to be up to n = 3f + 1. The consensus
rounds proceed, with each requiring three phases before committing a block, and blocking is prevented by
using timeouts. The termination mechanism is considered as novel, and takes advantage of the gossip-based
communication.

The Algorand cryptocurrency [41] uses the Byzantine agreement protocol BA*. BA* does not count
a vote per processor, but requires 2/3 of some weighted user total to append a block. It is a consensus
by committee protocol, where the committee is chosen randomly with some bias introduced according
to the weights of the users. Committee selection is performed privately and non-interactively by local
computations using cryptographic public keys and information from the blockchain itself. This approach
is suggested to mitigate attacks on users before they initiate the BA* protocol. Algorand requires a series
of assumptions, such as that more than 2/3 of the money in the currency is held by honest users, and for
liveness it requires strong synchrony, namely, that messages are delivered within a known time bound. It

4



also requires “weak synchrony” to maintain safety. In such periods of weak synchrony the system proceeds
by sending tentative blocks, which are committed in periods of strong synchrony.

Placing guarantees on timing assumptions may seem reasonable, if a system performs well “most of the
time” in terms of communication. Nevertheless, approaches that can immediately progress once messages
are delivered, rather than delaying even after some synchrony is established, have gained particular appeal.
Creating a system that is free from synchrony assumptions appears more graceful than struggling with
communication uncertainty in decentralized systems. Given the FLP impossibility, one can trade timing
assumptions with non-determinism. (We note that while Algorand uses randomness to choose a group of
verifier processors, its correctness depends on timing assumptions. The random component serves as a
measure against the common cryptocurrency issue of concentration of voting power by a handful of users.)

3.2 Randomized BFT

As was expected, the research community that tackled the BFT problem was interested in randomized
solutions as well. Randomized algorithms were popularized in computer science for two generally accepted
attributes: simplicity and removal of timing assumptions [105], [91, p. xiv], [100, p. ix]. For some problems,
the only known polynomial time solutions are probabilistic.

3.2.1 Preliminaries

Given the FLP impossibility mentioned before, the results by Rabin [105] and Ben-Or [18] on randomized
agreement were the first to use probabilistic methods to circumvent the impossibility, rather than invoking
timing assumptions limitations. The above works were followed by many other papers [7, 8, 30, 33, 34,
93, 118]. The idea (as given by Ben-Or [18]) is that if a process during a round receives a majority vote on
a single value, it decides in favor of this value. Otherwise, it changes its proposed value in the next round
by flipping a coin. The correctness proof places special focus on proving that the algorithm will terminate
with high probability; in other words, executions that do not terminate occur as events with probability 0.
Contrary to other cases, the efficiency of randomized agreement protocols has been criticized as having high
communication (due to comparatively high number of communication steps) and computational complexity
(due to customary employment of cryptography) [93].

Whilst being novel in using randomization to bypass FLP, Ben Or’s approach induced an exponential
number of rounds (unless f = O(

√
n), n being the number of processors), and tolerated no more than a

fifth of the processors being malicious, which is not optimal. Rabin [105] introduced a shared coin, such
that a sequence of coin tosses is distributed to all processors before the agreement protocol is initiated. The
algorithm assumes message authentication with digital signatures. It can tolerate f < n/10 of malicious
processors in an asynchronous setting, but it achieves agreement within 4 rounds. Toueg [118] gave an
optimal algorithm tolerating f < n/3 faulty processors with the same setting. In this case more rounds
were required, yet these were again constant in number.

At the beginning of the millenium, Cachin et al. [34] presented SINTRA which achieved replication on
Byzantine-tolerant atomic broadcast. In particular, it employs threshold cryptography for: (i) digital sig-
natures, (ii) coin-tossing, and (iii) public-key encryption (although for (i) it is stated that standard digital
signatures suffice). Based on this it implements broadcast primitives and binary agreement, which them-
selves are used to achieve multi-valued agreement resulting to atomic broadcast. The resulting protocol is
a secure causal atomic broadcast protocol. The threshold schemes for coin tossing comes from Cachin et
al. [33] where Byzantine agreement is achieved in constant time and the protocol is optimal in the number

5



of malicious processors that it can tolerate. In this parallel work, a trusted dealer is required in an initial
setup phase. From then on, the system can implement a transaction processing service that is considered
to suffice for an unlimited number of requests. The threshold scheme is not used directly by the agreement
component, but indirectly through its employment by the coin-tossing and digital signatures schemes.

In a very recent work by Abraham et al. [2], the authors solve asynchronous multi-valued Byzantine
agreement. Validity is given by an external validity function (as in the case of Tendermint and in a trend
following [32]), thus the problem solved it tipped a Validated Asynchronous Byzantine Agreement (VABA).
Previous results [33] gave reductions of VABA from binary agreement (which is agreement on a single value
from 2 possible values rather than from multiple values as is the case of VABA). Abraham et al. take a dif-
ferent approach through a view-change-based solution (much used in partially synchronous algorithms). It
avoids binary agreement by running n threads of leader election and then randomly electing a leader retro-
spectively. Timeouts (much needed in most partially synchronous protocols) are replaced by the knowledge
of progress of n− f leader-election threads. This VABA solution also uses cryptographic abstractions such
as threshold signatures and threshold coin-tossing. The protocol is secure against an adaptive adversary,
and optimal in resilience (tolerating 3f + 1) and in word communication with O(n2) messages (where a
message is roughly the size of one or two threshold signatures).

In another recent work, Cohen et al. [42] provide the first, as suggested, sub-quadratic binary Byzantine
agreement algorithm. The authors employ public-key cryptography to build a shared coin and use verifiable
random functions. The sub-quadratic word complexity comes at the cost of not having optimal resilience
(n ≈ 4.5f ), and also having both safety and termination guaranteed with high probability.

3.2.2 Blockchain-oriented randomized BFT

Because of increased interest on BFT for distributed ledgers, many BFT protocols have been proposed.
Some of these employ randomization.

HoneyBadgerBFT [89]: This was the first work on a randomized BFT solution that was leveraged
towards blockchains. The paper emphasizes its decision to focus on randomization rather than placing
timing assumption/failure detectors to circumvent the FLP result. To this end, it provides specific examples
of executions where PBFT-like protocols requiring some weak synchrony assumption may fail to progress
whilst in the same scenarios asynchronous protocol can progress. Moreover, it is suggested that randomized
BFT protocols can recover and progress faster than their weak-synchrony counterparts when messages are
delivered. The HoneyBadger service is proposed as the first BFT atomic broadcast protocol that provides
optimal asymptotic efficiency in the asynchronous setting. Structurally it follows SINTRA. The two main
lines of improvements done on SINTRA are: (a) removal of redundant work among processors by ensuring
fairness through the use of threshold public encryption, and (b) removal of suboptimal instantiation of the
Asynchronous Common Subset (ACS) module.

The ACS essentially lets processors decide on a common subset of requests. Honeybadger’s improve-
ment is achieved through the use of erasure codes and by the reduction of ACS to reliable broadcast rather
than multi-value validated Byzantine agreement. The reduction of ACS to reliable broadcast is due to Ben
Or et al. [18]. The ACS also requires binary agreement, and it uses the one by Mostefaoui et al. [97] which
uses a cryptographic common coin. The reliable broadcast algorithm is due to Bracha [26] combined with
erasure codes to enhance efficiency. Honeybadger employs cryptography, both for the common coin and
for the threshold encryption scheme that it uses in the top-level Honeybadger protocol. It assumes a trusted
dealer that delivers public keys and secret shares in an initial setup phase. HoneyBadger’s analysis shows
an O(N) communication bit/transaction complexity on its BAB protocol which is better than all previous
protocols, although the total communication complexity is the same as PBFT. The experimental analysis

6



compares Honeybadger with PBFT and shows improvements in the number of transactions per second. It
is clearly stated that Honeybadger is targeted towards scenarios where computational power is ample and
communication throughput is the scarce resource, since this is regarded as the standard case for blockchain
settings. Honeybadger’s implementation uses an 80-bit protocol instead of the standard 128-bit [61].

BEAT [61] harnesses Honeybadger’s modularity by specifying alternatives for some of Honeybadger’s
modules (threshold encryption scheme, information dispersal service, etc.). In this way it presents 3 variant
protocols that are suggested to outperform Honeybadger, whilst also providing optimizations. In particular,
BEAT-0 changes the threshold encryption (which is acclaimed to be more secure and efficient than Hon-
eybadger’s), the coin flipping mechanism and the erasure coding support. BEAT-1 uses the plain Bracha’s
protocol [26] rather than the erasure-coded version of HoneyBadger. This provides an advantage in cases of
low contention and batch size. BEAT-2 pushes the cost of threshold encryption to the client side reducing
latency (with weaker liveness guarantees), whilst also achieving causal ordering. BEAT- 3 and BEAT-4
are presented as “BFT storage systems” replacing reliable broadcast with asynchronous verifiable informa-
tion dispersal based on fingerprinted cross-checksum. The authors differentiate between BFT storage (only
implementing reads and writes) from BFT SMR that can support arbitrary operations. BEAT’s suite of
protocols targets a more per setting/per application mentality rather than a one-size-fits-all approach. Their
experimental results reflect this approach with the expected improvements appearing in the corresponding
experiments (whilst differentiating batch size, contention, node numbers). Nevertheless, the improvements
are not always spectacular, especially as the number of malicious processors is increased.

Hashgraph [14] departs from the Honeybadger/BEAT approach where there are two protocols one for
broadcast and one for voting. Instead, they propose an algorithm that incorporates both. In particular,
communication takes place in a gossip manner. A processor p randomly selects another processor q, to
whom it communicates any information that p considers as unknown to q. Such information is stored in a
data structure called a “hashgraph”. This allows for a unique protocol incorporating both communication and
virtual voting. The information on the local hashgraph information allows processors to divide the requests
into decision rounds, based on how strongly the information gossiped appears among the processors in the
hashgraph. The protocol again uses public key cryptography.

EPIC [80] focuses on tackling an adaptive adversary, in the sense that the set of f processors that may
act maliciously during the system’s lifetime may be different at any instance of the computation. This is said
to differ from the static adversary tackled by HoneyBadger and BEAT where the set of malicious processors
is static during the computation. With this focus, EPIC also changes modules of HoneyBadger and tests the
impact of these changes.

Whilst the probabilistic approach bears many benefits, it also has its downsides. The fact that de-
terminism is lost, implies that the algorithm’s verification and analysis should now combine both the
(deterministically-orientated) assertion-based reasoning, as well as probabilistic analysis [84, 101]. More
importantly, randomized algorithms will guarantee the correctness of the protocol but will strive to pro-
vide guarantees on whether it terminates or not. Termination is guaranteed with high probability, but it
is not certain as is the case with deterministic algorithms [11]. Bypassing cryptography: While crypto-
graphic paradigms constitute a main tool in most BFT solutions, there are several claims that cryptography
is expensive computationally. A line of work striving to achieve signature-free BFT is an alternative to the
aforementioned norm (see next subsection). Ousting cryptography is bound to generate increased burdens
on communication with more messages required to compensate the loss of guarantees that cryptography
provided. Nonetheless, the trade-off may in some cases be well worth it, and only the setting and the ap-
plication can flip the coin towards cryptography or not. We note here that the signature-free protocols still
require basic authentication to ensure that a message received by a processor p from the common channel

7



with some processor q, was not fed into the channel by some third processor.

3.2.3 Signature-free Randomized Consensus

As already mentioned, many works tackling Byzantine asynchronous SMR do this on top of atomic broad-
cast and/or consensus protocols. It is customary for these to be based on binary agreement. A specific group
of BFT/consensus/atomic broadcast protocols avoids the use of computationally expensive encryption meth-
ods (such as the commonly used threshold signatures) [107]. More specifically, it is (often) assumed that
authenticated communication links exist (i.e., a processor pi with a bidirectional channel with another pro-
cessor pj , will receive messages guaranteed to originate from pj not from another processor), but no further
cryptographic abstractions are used. For example a message from pi forwarded from pj to processor pk can-
not be confirmed either as originating from pi, or having remained unaltered. This approach, while avoiding
the computational burden of added cryptography, nevertheless, incurs extra costs on message exchanges in
order to ensure the validity of incoming messages.

Randomized Byzantine binary consensus. The already mentioned work by Ben-Or [18] does not em-
ploy advanced cryptographic paradigms. On the other side, it can take an exponential expected number of
round to terminate, since it only requires a local coin, i.e., one that provides a processor with a random
value independent of corresponding values given to other processors. Common coins on the other hand can
overcome this inefficiency, and require only a constant number of expected rounds. Possibly the first work
using a common coin for randomized binary consensus (a basic building block for SMR in many cases) was
by Rabin [105]. This though required signatures and was not optimal in resilience (f < n/10), but had
O(n2) message complexity and constant number of expected rounds. Signature-free solutions like the ones
of Berman and Garay [20] and Friedman et al. [66] also have a message complexity of O(n2), but are again
not optimally resilient, namely f < n/5.

Many of the early common coins required a trusted dealer, which, a priori, provides the participating
processors with a sequence of bits, in a setup phase. This trusted dealer assumption can be bypassed by
using distributed key generation like the one of [73], which implements an eventually perfect common coin.
Nevertheless, it is not known if a common coin can be obtained in a signature-free way in the asynchronous
setting. An interesting experimental comparison between local and common coins can be found in [92]. The
experiments showed that the local coin managed a very good performance given the exponential theoretical
bound on the rounds, and managed to surpass the computationally “heavier” shared coin in many cases. Yet
more experiments will be needed to give decisive results.

Bracha [27] on one hand, and Srikanth and Toueg [115] on the other, published in the same year (1987),
possibly the first signature-free optimal resilience binary Byzantine consensus protocols. A signature-free
asynchronous binary consensus protocol with optimal resilience is also given by Correia et al. [45] as an
appendix, since it is required for their atomic broadcast protocol. Mostefaoui et al. [97] provide an asyn-
chronous binary consensus, which for the first time, achieves optimal resilience, quadratic message com-
plexity and constant expected time, and also constant complexity of message size. The binary consensus
algorithm sits on top of a “double-synchronized binary-value broadcast”, which is constructed from basic
broadcast primitives. The overall idea of this broadcast protocol is that instead of tracking on which pro-
cessor broadcast a specific value, it only considers how many distinct processes have broadcast this same
value. Moreover, it ensures that a value delivered by a correct process was not broadcast by only malicious
processes. The consensus algorithm uses a common coin. In contrast to a first version of the algorithm [96],
which required a perfect common coin and did not accept message reordering, this version only requires
a weak coin and can tolerate message reordering. Tyler [48] experimentally evaluated this work, and has

8



also proposed two alternative algorithms with the same qualities [49]. In a previous work, Mostefaoui and
Raynal [98] propose a randomized binary consensus algorithm that is based on validated broadcast, which
is more expensive communication-wise than reliable broadcast.

Building signature-free SMR and atomic broadcast on top of binary consensus. It is common to con-
struct atomic broadcast services modularly on top of multi-valued consensus and/or vector consensus, them-
selves using a binary consensus protocol. Song and Van Renesse [113] propose a multi-valued consensus
protocol that can call any binary consensus routine and “strongly” completes in one step, where the “strongly
one-step” execution is rigorously defined in the paper to be distinct from similar metrics of other papers. The
solution given is not optimal in resilience. Mostefaoui and Raynal [99] suggest another optimal resilience
signature-free reduction of multi-valued consensus to binary consensus.

Milosevic et al. [90] elaborate on the actual theory of reducing atomic broadcast to consensus. They
consider four different versions of the validity property of consensus and prove how each one of these is
equivalent, weaker or stronger to atomic broadcast. They also provide a reduction of their own. The Cachin
et al. [32] in SINTRA employ signatures to achieve atomic broadcast. Liang and Vaidya [79] consider a
synchronous time model. Patra et al. [103] presented an optimal resilience algorithm that is based on a
common coin scheme suggested to be more efficient than previous ones.

Correia et al. [45] provide a signature-free, asynchronous, leaderless, and optimal in resilience protocol
(i.e., n = 3f + 1) reducing atomic broadcast to vector-consensus and subsequently to multi-valued and then
to binary consensus. Bottom-up, the reliable broadcast protocol is assumed as existing. A binary consensus
algorithm is given as an appendix of the paper. It is a signature-free optimal resilience version of Bracha’s
algorithm [26], although it is noted that the coin-tossing scheme used (which is the one given by Cachin et
al. [33]) does not fully avoid cryptography since it is based the Diffie-Hellman problem.

The paper focus of the paper is on the reduction of atomic broadcast to multi-valued consensus. We
briefly describe the protocol, since it is indicative of how such protocols are structured. The multi-valued
consensus algorithm starts with an initialization phase and a reliable broadcast phase where processors send
their proposed value. Once n− f proposals have been received, if there exists a unique value supported by
n− 2f processors this is broadcast again, otherwise ⊥ is sent. Provided on whether or not a value common
to n − f processors was delivered, a binary value of 1 or 0 is agreed upon by calling the binary broadcast
protocol. The algorithm returns ⊥ if binary consensus returns 0, or otherwise (binary consensus returns 1)
the processor waits until at least n− 2f messages are received that support a specific value.

Vector consensus is agreement on a single vector of values rather than on a single value [59]. The
guarantees provided beyond agreement and eventual termination, concern validity: i.e., the vector of every
correct processor pi must (i) have at least f + 1 values proposed by correct processors, and (ii) the value
Vi[j] of the vector that corresponds to correct processor pj’s value as delivered by pi must be either pj’s true
value or ⊥. The main idea is that as messages responding to an initial call for vector values accumulate,
repeating calls to multi-valued consensus are performed with the vector as the value. When the multi-valued
consensus returns a non-⊥ value (i.e., an agreed upon vector) then this is returned as the agreed vector.

Atomic broadcast sits on top of vector consensus (although it could be build straight on top of multi-
valued consensus, but still the vector consensus functionality would have to appear). After the initialization
phase, whenever there are pending messages to be atomically broadcast, the protocol starts with a reliable
broadcast of the message and of the message number (which is a monotonically increasing integer counter).
Then the vector consensus algorithm is called with the set of hashes of the messages to be delivered. Once
all the messages that appear f + 1 times in the agreed vector have been received locally, they are atomically
delivered per the agreed order. The remaining messages are left for the next round of atomic broadcast,

9



where rounds are again counted with an integer counter.
RITAS [93] is a stack of protocols that provide randomized Byzantine agreement. It is mostly based

on the signature-free protocols of Correia et al. [45]. In particular, the protocols of multivalued and vector
consensus are from [45], and minor modifications allow for atomic broadcast to be based directly on atomic
broadcast and not on vector consensus. RITAS provides implementations of these protocols. It also proposes
a reliable broadcast and an adapted binary consensus protocol from [27]. As such, it theoretically terminates
in an exponential number of communication steps [19, 27].

As the plethora of BFT papers from the past and the present, BFT (deterministic or randomized) is a
well-established and enduring replication technique. It also offers a wide scope for the interested researcher.
Nevertheless, BFT guarantees tolerance against malicious behavior only when the system’s assumptions are
obeyed. We turn towards another notion in fault tolerance, which aims at recovering the intended behavior
of an algorithm when the system’s assumptions are violated.

4 Self-stabilization

4.1 Introduction

Fault-tolerant systems, let them be distributed ledger infrastructure, cloud-based systems, databases, or
other, will provide fault-tolerance guarantees only if specific assumptions hold. It is possible that in some
instances system assumptions are violated. For example, a system might be tolerant to some number of
failures of its processing entities, or to less than a third of those exhibiting malicious behavior. This is
a rather most of the times uncontrollable. The same holds for assumptions on bounded churn rates, i.e.,
bounded rates of processors’ joins and leaves/crashes. Another example is systems that offer guarantees
“with high probability”, e.g., error detection.

While such assumptions may be sufficient for long periods of a system’s lifetime, some rare violations
cannot be completely ruled out. Albeit, each of these sporadic instances may have detrimental effects, oc-
casionally lethal [125]. (Note that their “extreme” rarity is actually disputed [60], i.e., they might occur
more often than their theoretical estimates.) For example, a soft error (some accidental bit-flip) may force
a counter to acquire its maximal value, and thus drive the system to either non-progress or to a permanent
violation of the system’s safety properties. A corrupt program counter or program variable can bring the
system to an arbitrary state from which it cannot recover, since it was not anticipated by the system’s design-
ers [25, 125]. The system remains useless, requiring human intervention to recover and personnel to always
be on-call. Self-stabilizing systems [53, 55, 111] are designed to automatically recover the system back to
its working state and desired behavior, from any given state it may end up to after an unanticipated failure.
Such systems have a comprehensive approach towards faulty system states. These are states that system
designers usually consider as impossible to reach or fail to consider at all. In this way, self-stabilizing sys-
tems guarantee convergence to a legitimate system state starting from any possible system state, and closure
when this legitimate state has been reached, and until the guarantees of the system are violated again [9].

Impressively, this approach can even cope with the standard designers’ assumption that the system and
its variables are initiated to a consistent system state. In general, automatic recovery reduces the cost of
recovery, and most possibly the off-time, making systems more available, and provides added-value as
far as their maintainability is concerned [86]. The self-stabilization research community has produced many
results for a plethora of problems that are fundamental to distributed computing. SMR, as might be expected,
has drawn the attention of many members of the self-stabilization community that aim to enhance existing
solutions with the stabilization property. In the sequel, we will review related work.

10



For completeness, we add a couple of lines on the historical background of self-stabilization: Edsger
Dijkstra [53], [51, p. 313] was the first to identify the self-stabilization property for distributed algorithms
while solving the mutual exclusion task. Leslie Lamport [76] commenting on Dijkstra’s paper, held it to be
Dijkstra’s “most brilliant work”, and “a milestone in work on fault tolerance”, as well as a “very fertile field
for research”. Lamport’s characterization drew attention to self-stabilization and the distributed computing
community has seen a mounting number of published research papers on self-stabilization (including an
annual conference dedicated to self-stabilization). Many fundamental protocols that enable the existence of
the internet (e.g., routing protocols) are self-stabilizing [36, 39, 104].

4.2 Self-Stabilizing BFT

The few attempts to tackle the problem of self-stabilizing BFT are very recent. Binun et al. [22] assume
a semi-synchronous setting to bypass the FLP impossibility, i.e., the system’s lower and upper message
delivery delays are known. The algorithm has optimal resilience with n = 3f + 1. They employ the
self-stabilizing Byzantine-tolerant clock synchronization algorithm from [58] to enforce a new instance of
Byzantine agreement upon every clock pulse. The algorithm requires that n instances of BFT are initiated
in order to reach to an agreed vector of histories. Once this history is received, the changes instructed by
the requests in the history are applied to the replica. The BFT version avoids the use of private/public key
cryptography by using a rotating leader and information secure methods.

A second work by Dolev et al. [56], follows the PBFT protocol [37]. The setting is asynchronous and
the algorithm uses failure detection to monitor whether the leader is acting maliciously. A major challenge
in self-stabilizing BFT is that a processor which is in an arbitrary state, cannot make apart between cor-
ruption caused due to this arbitrary state and malicious messages from malicious agents. This is especially
challenging.

The algorithm comprises of a view change module that monitors the view of the system. The view
is a bounded integer counter that corresponds to the identifier of a processor, such that the processor with
the corresponding identifier is considered the leader. This module is responsible for the convergence of the
processors to a unique default view in the case where there is a transient fault. It is also responsible to change
the view when the failure detector requires it, i.e., either when the leader fails to process pending requests, or
when it is not responsive. To this end it leverages on a Θ-failure detector that counts and compares message
exchanges in order to avoid using timeouts. The replication module follows the three phase protocol of
PBFT, with the additional task of monitoring for local state corruption, in which case a reset is triggered.

Recent work by Lundström et al. [82, 83] provides self-stabilizing reliable broadcast and binary consen-
sus (with the “indulgence” and “zero-degradation” characteristics). These algorithms can form the basis for
asynchronous randomized SMR, but they are not Byzantine tolerant.

4.3 Randomized Self-stabilization

There has been extensive work on algorithms that handle both self-stabilization and randomization. Never-
theless, a distinction must be drawn between a self-stabilizing randomized algorithm, which is an algorithm
that is probabilistic (usually) towards its termination and deterministic in its convergence (e.g., [120]), and
a randomized self-stabilizing algorithm. The latter is randomized towards stabilization, i.e., it convergences
with some high probability. For example, Herman [70] presents a token-passing algorithm in a synchronous
anonymous ring that achieves convergence with probability 1 using local coin flips.

There are two definitions for a randomized or probabilistic self-stabilizing algorithm:

11



(a) Expectation-based: An algorithm is randomized self-stabilizing for a task if starting with any system
configuration and considering any fair scheduler, then the algorithm will reach a safe configuration
within an expected number of rounds bounded by some constant (possibly dependent on the number
of the system’s processors) [55, 71].

(b) Probability-based: A protocol is said to be probabilistic self-stabilizing if eventually it converges to a
legitimate configuration with probability 1 [70, 123].

The above definitions suggest that convergence is probabilistic.
Beauquier et al. [16] provide a complete model framework for proving the self-stabilization of random-

ized protocols. (The framework was used in several previous papers as well, e.g., [15]). The model clearly
distinguishes between the scheduler (in this case a non-deterministic one) and the algorithm’s behavior (a
randomized one). The approach is demonstrated on two randomized self-stabilizing algorithms on rings,
one for leader election and one on token circulation, with the protocols being optimal in space. Whilst
Beauquier et al. [16] work with shared memory, Mayer et al. [88] present a similar leader election algorithm
in the message-passing model. The above works do not consider failures.

Ben-Or et al. [19] construct a Byzantine tolerant digital clock synchronization algorithm that has optimal
(i.e., constant) convergence time and optimal resilience. They implement a common coin in a synchronous
setting based on a global beat system. It is left as an open problem whether their method can be tuned to
solve the problem in an asynchronous setting.

On the theoretical side, Dolev and Tzatchar [57] target self-stabilizing protocols that employ random-
ization to achieve convergence in the presence of Byzantine nodes, and confine the use of randomization
only to the period of convergence and not after this. This adaptive method is demonstrated on the token
passing algorithm by Herman [70] and on the clock synchronization algorithm by Ben-Or et al. [19]. Ya-
mashita [123] and Devismes et al. [52] suggested a way to construct probabilistic self-stabilizing algorithms
from weak-stabilizing algorithms that guarantee stabilization only in the best case and in the absence of
failed processors. In a recent work, Volker [120] presented a scheme transforming local randomized algo-
rithms to self-stabilizing randomized algorithms that are deterministic towards their convergence. Again
faults are not considered beyond transient ones.

5 Towards a Randomized Self-Stabilizing BFT Solution - Challenges

We have already given the motivation for the development of self-stabilizing systems. Together with all the
vulnerabilities that a system can have, we underline a specific assumption that may be violated specifically
in a Byzantine-tolerant system: Based on the well-known impossibility result of [78], less than a third of
processors may be malicious. This assumption, though, cannot be controlled in any way. Its violation is
a transient fault and can lead the system to an arbitrary state. As such, a self-stabilizing system can re-
cover the system to an expected (safe) state. There is existing work on stabilizing consensus and agreement
algorithms [5, 13, 17, 54, 112]. Nevertheless, it usually considers non-Byzantine, or synchronous environ-
ments, and whenever asynchronous Byzantine settings are considered, they do not align with the suggested
approach on a randomized self-stabilizing Byzantine-tolerant SMR protocol.

Main Challenges. The suggested objective must circumvent a series of impossibility results [62, 65, 78].
We note the following challenges and limitations.

1. Most solutions of BFT, Byzantine consensus and atomic broadcast are dependent on cryptogra-
phy, with most recent solutions using threshold encryption. This is an important obstacle for self-

12



stabilization at the current timeframe. To this point there is scant research on self-stabilizing crypto-
graphic protocols [29].

2. Randomization requires a stream of random bits. Building a common coin with a fixed number of
rounds (like in Rabin [105]) requires secret sharing or other similar methods employing cryptographic
paradigms, which to this moment are non-existent in a self-stabilizing form (and may indeed be proven
impossible in the future). A starting point could be made by employing Ben Or’s local coin approach,
which, nevertheless, induces a theoretical exponential number of rounds to terminate. We have already
noted that, in many cases, the difference between local and shared coin algorithms is suggested to be
only theoretical and not practical (Section 3.2.3).

3. Some non-stabilizing protocols require unbounded local memory or channel capacity. This is incom-
patible with self-stabilization which requires bounded capacity links [55, Chapter 3.2].

4. Distinguishing malicious behavior is not easy in such a system, since corrupt values in communica-
tion links may result from either malicious processors or arbitrary faults [62]. Since the approach is
randomized and not based on detecting malicious behavior, detection is focused on self-stabilization
and understanding corruption of the system’s state.

A final word. The current survey followed the state-of-the-art in distributed ledgers, and the revived in-
terest in Byzantine-tolerant state machine replication. We underlined the need for a holistic fault-tolerance
approach for the critical socio-economic services that these systems are projected to deploy. In one sense,
this approach culminates in Byzantine-tolerant self-stabilizing protocols. Performance and ease of imple-
mentation are important issues that define the future of any such solution, with results suggesting that the
additional performance cost of self-stabilization is far outweighed by the added guarantees [67]. The focus
on randomized protocols, informs us of a range of existing randomized solutions that may prove suitable as
a basis to produce corresponding self-stabilizing solutions.

References

[1] Ittai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and bft. Bulletin of EATCS,
3(123), 2017.

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asyn-
chronous byzantine agreement. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July
29 - August 2, 2019, pages 337–346. ACM, 2019.

[3] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci Piergio-
vanni. Correctness of tendermint-core blockchains. In 22nd International Conference on Principles of
Distributed Systems, OPODIS 2018, December 17-19, 2018, Hong Kong, China, pages 16:1–16:16,
2018.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De
Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralid-
haran, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,
Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. Hyperledger

13



fabric: a distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15, 2018.

[5] Dana Angluin, Michael J. Fischer, and Hong Jiang. Stabilizing consensus in mobile networks. In
Distributed Computing in Sensor Systems, Second IEEE International Conference, DCOSS 2006, San
Francisco, CA, USA, June 18-20, 2006, Proceedings, pages 37–50, 2006.

[6] Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi. State ma-
chine replication is more expensive than consensus. In 32nd International Symposium on Distributed
Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pages 7:1–7:18, 2018.

[7] Luciana Arantes, Roy Friedman, Olivier Marin, and Pierre Sens. Probabilistic byzantine tolerance
for cloud computing. In 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS). IEEE,
sep 2015.

[8] Luciana Arantes, Roy Friedman, Olivier Marin, and Pierre Sens. Probabilistic byzantine tolerance
scheduling in hybrid cloud environments. In Proceedings of the 18th International Conference on
Distributed Computing and Networking - ICDCN ’17. ACM Press, 2017.

[9] Anish Arora and Mohamed G. Gouda. Closure and convergence: a foundation of fault-tolerant com-
puting. IEEE Transactions on Software Engineering, 19(11):1015–1027, Nov 1993.

[10] James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing, 16(2-
3):165–175, 2003.

[11] James Aspnes. Randomized protocols for asynchronous consensus. Distributed Computing, 16(2-
3):165–175, 2003.

[12] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and Marko Vukolic. The
next 700 BFT protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45, 2015.

[13] Jacques M. Bahi, Mohammed Haddad, Mourad Hakem, and Hamamache Kheddouci. Self-stabilizing
consensus average algorithm in distributed sensor networks. In Transactions on Large-Scale Data-
and Knowledge-Centered Systems IX, pages 28–41. Springer Berlin Heidelberg, 2013.

[14] Leemon Baird and Atul Luykx. The hashgraph protocol: Efficient asynchronous BFT for high-
throughput distributed ledgers. In 2020 International Conference on Omni-layer Intelligent Systems,
COINS 2020, Barcelona, Spain, August 31 - September 2, 2020, pages 1–7. IEEE, 2020.

[15] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory space requirements for self-
stabilizing leader election protocols. In Brian A. Coan and Jennifer L. Welch, editors, Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’99, Atlanta,
Georgia, USA, May 3-6, 1999, pages 199–207. ACM, 1999.

[16] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Randomized self-stabilizing and space
optimal leader election under arbitrary scheduler on rings. Distributed Comput., 20(1):75–93, 2007.

[17] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca Trevisan.
Stabilizing consensus with many opinions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
620–635, 2016.

14



[18] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, August 17-19, 1983, pages 27–30,
1983.

[19] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing byzantine tolerant digital
clock synchronization. In Rida A. Bazzi and Boaz Patt-Shamir, editors, Proceedings of the Twenty-
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC 2008, Toronto,
Canada, August 18-21, 2008, pages 385–394. ACM, 2008.

[20] Piotr Berman and Juan A. Garay. Randomized distributed agreement revisited. In Digest of Pa-
pers: FTCS-23, The Twenty-Third Annual International Symposium on Fault-Tolerant Computing,
Toulouse, France, June 22-24, 1993, pages 412–419. IEEE Computer Society, 1993.

[21] Alysson Neves Bessani, João Sousa, and Eduardo Adı́lio Pelinson Alchieri. State machine repli-
cation for the masses with BFT-SMART. In 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 355–362,
2014.

[22] Alexander Binun, Thierry Coupaye, Shlomi Dolev, Mohammed Kassi-Lahlou, Marc Lacoste, Alex
Palesandro, Reuven Yagel, and Leonid Yankulin. Self-stabilizing byzantine-tolerant distributed repli-
cated state machine. In Stabilization, Safety, and Security of Distributed Systems - 18th International
Symposium, SSS 2016, Lyon, France, November 7-10, 2016, Proceedings, pages 36–53, 2016.

[23] K. Birman, D. Freedman, Q. Huang, and P. Dowell. Overcoming cap with consistent soft-state repli-
cation. Computer, 45(2):50–58, Feb 2012.

[24] Olivier Boireau. Securing the blockchain against hackers. Network Security, 2018(1):8–11, 2018.

[25] Danny Boyle and Robert C. Mendick. Worldwide airport chaos after computer check-in systems
crash, 2017.

[26] Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Tiko Kameda, Jayadev
Misra, Joseph G. Peters, and Nicola Santoro, editors, Proceedings of the Third Annual ACM Sympo-
sium on Principles of Distributed Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages
154–162. ACM, 1984.

[27] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, 1987.

[28] Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef Widder,
and Anca Zamfir. Tendermint blockchain synchronization: Formal specification and model check-
ing. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Verification Principles - 9th International Symposium on Leveraging Ap-
plications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part
I, volume 12476 of Lecture Notes in Computer Science, pages 471–488. Springer, 2020.

[29] D. Brownstein, S. Dolev, and M. V. Kumaramangalam. Self-stabilizing secure computation. IEEE
Transactions on Dependable and Secure Computing (Under publication), pages 1–1, 2020.

15



[30] Christian Cachin. State machine replication with byzantine faults. In Charron-Bost et al. [40], pages
169–184.

[31] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on Distributed
Cryptocurrencies and Consensus Ledgers, 2016.

[32] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asyn-
chronous broadcast protocols. IACR Cryptol. ePrint Arch., 2001:6, 2001.

[33] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219–246, may
2005.

[34] Christian Cachin and Jonathan A. Poritz. Secure intrusion-tolerant replication on the internet. In
2002 International Conference on Dependable Systems and Networks (DSN 2002), 23-26 June 2002,
Bethesda, MD, USA, Proceedings, pages 167–176. IEEE Computer Society, 2002.

[35] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in the wild (keynote talk). In
31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, pages 1:1–1:16, 2017.

[36] Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid. Renaissance: A
self-stabilizing distributed SDN control plane. In 38th IEEE International Conference on Distributed
Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, pages 233–243, 2018.

[37] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), New Orleans,
Louisiana, USA, February 22-25, 1999, pages 173–186, 1999.

[38] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus. Journal of the ACM, 43(4):685–722, 1996.

[39] Ho-Yen Chang, Shyhtsun Felix Wu, and Y. Frank Jou. Real-time protocol analysis for detecting
link-state routing protocol attacks. ACM Trans. Inf. Syst. Secur., 4(1):1–36, 2001.

[40] Bernadette Charron-Bost, Fernando Pedone, and André Schiper, editors. Replication: Theory and
Practice, volume 5959 of Lecture Notes in Computer Science. Springer, 2010.

[41] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput.
Sci., 777:155–183, 2019.

[42] Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic asynchronous
byzantine agreement WHP. In Hagit Attiya, editor, 34th International Symposium on Distributed
Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages
25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[43] Miguel Correia. From byzantine consensus to blockchain consensus. Essentials of Blockchain Tech-
nology (2019), 41, 2019.

16



[44] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. How to tolerate half less one byzantine
nodes in practical distributed systems. In 23rd International Symposium on Reliable Distributed
Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil, pages 174–183. IEEE Computer
Society, 2004.

[45] Miguel Correia, Nuno Ferreira Neves, and Paulo Verı́ssimo. From consensus to atomic broadcast:
Time-free byzantine-resistant protocols without signatures. Comput. J., 49(1):82–96, 2006.

[46] Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and Paulo Verı́ssimo. Byzantine
consensus in asynchronous message-passing systems: a survey. IJCCBS, 2(2):141–161, 2011.

[47] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems: Concepts
and Design. Addison-Wesley Publishing Company, USA, 5th edition, 2011.

[48] Tyler Crain. Experimental evaluation of asynchronous binary byzantine consensus algorithms with
t<n/3 and o(n2) messages and O(1) round expected termination. CoRR, abs/2004.09547, 2020.

[49] Tyler Crain. Two more algorithms for randomized signature-free asynchronous binary byzantine con-
sensus with t<n/3 and o(n2) messages and O(1) round expected termination. CoRR, abs/2002.08765,
2020.

[50] Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev. Atomic broadcast: From
simple message diffusion to byzantine agreement. Inf. Comput., 118(1):158–179, 1995.

[51] Nell B Dale and John Lewis. Computer science illuminated. Jones & Bartlett Learning, 2011.

[52] Stéphane Devismes, Sébastien Tixeuil, and Masafumi Yamashita. Weak vs. self vs. probabilistic
stabilization. Int. J. Found. Comput. Sci., 26(3):293–320, 2015.

[53] Edsger W Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643–644, 1974.

[54] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian Scheideler.
Stabilizing consensus with the power of two choices. In Proceedings of the 23rd ACM symposium on
Parallelism in algorithms and architectures - SPAA ’11. ACM Press, 2011.

[55] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[56] Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad Michael Schiller. Self-stabilizing
byzantine tolerant replicated state machine based on failure detectors. In Cyber Security Cryptog-
raphy and Machine Learning - Second International Symposium, CSCML 2018, Beer Sheva, Israel,
June 21-22, 2018, Proceedings, pages 84–100, 2018.

[57] Shlomi Dolev and Nir Tzachar. Randomization adaptive self-stabilization. Acta Informatica, 47(5-
6):313–323, 2010.

[58] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of byzan-
tine faults. J. ACM, 51(5):780–799, 2004.

17



[59] Assia Doudou and André Schiper. Muteness detectors for consensus with byzantine processes. In
Brian A. Coan and Yehuda Afek, editors, Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998,
page 315. ACM, 1998.

[60] K. Driscoll, B. Hall, Håkan Sivencrona, and P. Zumsteg. Byzantine fault tolerance, from theory to
reality. In Computer Safety, Reliability, and Security, 22nd International Conference, SAFECOMP
2003, Edinburgh, UK, September 23-26, 2003, Proceedings, pages 235–248, 2003.

[61] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: asynchronous BFT made practical. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 2028–2041. ACM, 2018.

[62] Swan Dubois, Maria Potop-Butucaru, Mikhail Nesterenko, and Sébastien Tixeuil. Self-stabilizing
byzantine asynchronous unison. J. Parallel Distrib. Comput., 72(7):917–923, 2012.

[63] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[64] Muhammad Fayyaz and Tanya Vladimirova. Survey and future directions of fault-tolerant distributed
computing on board spacecraft. Advances in Space Research, 58(11):2352 – 2375, 2016.

[65] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, April 1985.

[66] Roy Friedman, Achour Mostéfaoui, and Michel Raynal. Simple and efficient oracle-based consensus
protocols for asynchronous byzantine systems. IEEE Trans. Dependable Secur. Comput., 2(1):46–56,
2005.

[67] Chryssis Georgiou, Robert Gustafsson, Andreas Lindhé, and Elad Michael Schiller. Self-stabilization
overhead: A case study on coded atomic storage. In Mohamed Faouzi Atig and Alexander A.
Schwarzmann, editors, Networked Systems - 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19-21, 2019, Revised Selected Papers, volume 11704 of Lecture Notes in Computer
Science, pages 131–147. Springer, 2019.

[68] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter,
Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and decentralized trust
infrastructure. In 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, pages 568–580. IEEE, 2019.

[69] Maurice Herlihy. Blockchains and the future of distributed computing. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, page 155, 2017.

[70] Ted Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.

[71] Amos Israeli and Marc Jalfon. Token management schemes and random walks yield self-stabilizing
mutual exclusion. In Cynthia Dwork, editor, Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, August 22-24, 1990, pages
119–131. ACM, 1990.

18



[72] Pankaj Jalote. Fault tolerance in distributed systems. Prentice Hall, 1994.

[73] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous distributed
key generation for computationally-secure randomness, consensus, and threshold signatures. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1751–1767. ACM, 2020.

[74] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong. Zyzzyva:
Speculative byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1–7:39, 2009.

[75] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[76] Leslie Lamport. 1983 invited address solved problems, unsolved problems and non-problems in con-
currency. In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’84), pages 1–11, New York, NY, USA, 1984. ACM.

[77] Leslie Lamport. Byzantizing paxos by refinement. In Proceedings of the 25th International Sympo-
sium on Distributed Computing (DISC’11), pages 211–224, 2011.

[78] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[79] Guanfeng Liang and Nitin H. Vaidya. Error-free multi-valued consensus with byzantine failures. In
Cyril Gavoille and Pierre Fraigniaud, editors, Proceedings of the 30th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 11–20.
ACM, 2011.

[80] Chao Liu, Sisi Duan, and Haibin Zhang. EPIC: efficient asynchronous BFT with adaptive security. In
50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2020,
Valencia, Spain, June 29 - July 2, 2020, pages 437–451. IEEE, 2020.

[81] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic. XFT: practi-
cal fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 485–500, 2016.

[82] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing indulgent zero-
degrading binary consensus. In International Conference on Distributed Computing and Networking
2021, ICDCN ’21, page 106–115, New York, NY, USA, 2021. ACM.

[83] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. Self-stabilizing uniform reliable broad-
cast. In Proceedings of the 8th International Conference on Networked Systems (NETYS’20), page
(Accepted), 2021.

[84] Nancy Lynch, Isaac Saias, and Roberto Segala. Proving time bounds for randomized distributed
algorithms. In Proceedings of the thirteenth annual ACM symposium on Principles of distributed
computing - PODC '94. ACM Press, 1994.

19



[85] Sujaya Maiyya, Victor Zakhary, Divy Agrawal, and Amr El Abbadi. Database and distributed com-
puting fundamentals for scalable, fault-tolerant, and consistent maintenance of blockchains. PVLDB,
11(12):2098–2101, 2018.

[86] Mahyar R. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for distributed clock syn-
chronization systems. In Stabilization, Safety, and Security of Distributed Systems, 8th International
Symposium, SSS 2006, Dallas, TX, USA, November 17-19, 2006, Proceedings, pages 411–427, 2006.

[87] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Trans. Dependable Sec.
Comput., 3(3):202–215, 2006.

[88] Alain J. Mayer, Rafail Ostrovsky, Yoram Ofek, and Moti Yung. Self-stabilizing symmetry breaking
in constant space. SIAM J. Comput., 31(5):1571–1595, 2002.

[89] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 31–42, New York, NY, USA, 2016. ACM.

[90] Zarko Milosevic, Martin Hutle, and André Schiper. On the reduction of atomic broadcast to consen-
sus with byzantine faults. In 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011),
Madrid, Spain, October 4-7, 2011, pages 235–244. IEEE Computer Society, 2011.

[91] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[92] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo. Experimental comparison of local and shared
coin randomized consensus protocols. In 2006 25th IEEE Symposium on Reliable Distributed Systems
(SRDS’06), pages 235–244, 2006.

[93] Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Verı́ssimo. RITAS: services for
randomized intrusion tolerance. IEEE Trans. Dependable Secur. Comput., 8(1):122–136, 2011.

[94] Camilo Mora, Randi L Rollins, Katie Taladay, Michael B Kantar, Mason K Chock, Mio Shimada,
and Erik C Franklin. Bitcoin emissions alone could push global warming above 2◦. Nature Climate
Change, 8(11):931, 2018.

[95] Sir Amyas Morse. Investigation: Wannacry cyber attack and the nhs, 2018.

[96] Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-free asynchronous byzantine
consensus with t 2<n/3 and o(n2) messages. In Magnús M. Halldórsson and Shlomi Dolev, editors,
ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18,
2014, pages 2–9. ACM, 2014.

[97] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary
byzantine consensus with t < n/3, o(n2) messages, and O(1) expected time. J. ACM, 62(4):31:1–
31:21, 2015.

[98] Achour Mostéfaoui and Michel Raynal. Signature-free broadcast-based intrusion tolerance: Never
decide a byzantine value. In Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah, editors,
Principles of Distributed Systems - 14th International Conference, OPODIS 2010, Tozeur, Tunisia,

20



December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes in Computer Science, pages
143–158. Springer, 2010.

[99] Achour Mostéfaoui and Michel Raynal. Signature-free asynchronous byzantine systems: from mul-
tivalued to binary consensus with t< n/3, o(n2) messages, and constant time. Acta Informatica,
54(5):501–520, 2017.

[100] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[101] Gethin Norman. Analysing randomized distributed algorithms. In Validation of Stochastic Systems -
A Guide to Current Research, pages 384–418, 2004.

[102] Svein Ølnes, Jolien Ubacht, and Marijn Janssen. Blockchain in government: Benefits and implica-
tions of distributed ledger technology for information sharing. Government Information Quarterly,
34(3):355–364, 2017.

[103] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Asynchronous byzantine agreement with
optimal resilience. Distributed Comput., 27(2):111–146, 2014.

[104] Radia J. Perlman. Fault-tolerant broadcast of routing information. Computer Networks, 7:395–405,
1983.

[105] Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations
of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 403–409. IEEE Computer
Society, 1983.

[106] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous byzantine-fault-tolerant
atomic broadcast. IACR Cryptol. ePrint Arch., 2006:82, 2006.

[107] Michel Raynal. Signature-free communication and agreement in the presence of byzantine processes
(tutorial). In Emmanuelle Anceaume, Christian Cachin, and Maria Gradinariu Potop-Butucaru, edi-
tors, 19th International Conference on Principles of Distributed Systems, OPODIS 2015, December
14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 1:1–1:10. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

[108] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.
Springer, 2018.

[109] Kenji Saito and Hiroyuki Yamada. What’s so different about blockchain? - blockchain is a prob-
abilistic state machine. In 36th IEEE International Conference on Distributed Computing Systems
Workshops, ICDCS Workshops, Nara, Japan, June 27-30, 2016, pages 168–175, 2016.

[110] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[111] Marco Schneider. Self-stabilization. ACM Computer Survey, 25(1):45–67, March 1993.

[112] Manfred Schwarz, Kyrill Winkler, and Ulrich Schmid. Fast consensus under eventually stabilizing
message adversaries. In Proceedings of the 17th International Conference on Distributed Computing
and Networking - ICDCN ’16. ACM Press, 2016.

21



[113] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous consensus. In
Gadi Taubenfeld, editor, Distributed Computing, 22nd International Symposium, DISC 2008, Ar-
cachon, France, September 22-24, 2008. Proceedings, volume 5218 of Lecture Notes in Computer
Science, pages 438–450. Springer, 2008.

[114] Alexander Spiegelman, Arik Rinberg, and Dahlia Malkhi. ACE: abstract consensus encapsulation
for liveness boosting of state machine replication. In Quentin Bramas, Rotem Oshman, and Paolo
Romano, editors, 24th International Conference on Principles of Distributed Systems, OPODIS 2020,
December 14-16, 2020, Strasbourg, France (Virtual Conference), volume 184 of LIPIcs, pages 9:1–
9:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[115] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Comput., 2(2):80–94, 1987.

[116] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles and paradigms, 2nd
Edition. Pearson Education, 2007.

[117] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles and paradigms (2nd
edition). Pearson Education, 2007.

[118] Sam Toueg. Randomized byzantine agreements. In Proceedings of the third annual ACM symposium
on Principles of distributed computing - PODC ’84. ACM Press, 1984.

[119] Lewis Tseng. Recent results on fault-tolerant consensus in message-passing networks. In Jukka
Suomela, editor, Structural Information and Communication Complexity - 23rd International Collo-
quium, SIROCCO 2016, Helsinki, Finland, July 19-21, 2016, Revised Selected Papers, volume 9988
of Lecture Notes in Computer Science, pages 92–108, 2016.

[120] Volker Turau. Making randomized algorithms self-stabilizing. In Keren Censor-Hillel and Michele
Flammini, editors, Structural Information and Communication Complexity - 26th International Col-
loquium, SIROCCO 2019, L’Aquila, Italy, July 1-4, 2019, Proceedings, volume 11639 of Lecture
Notes in Computer Science, pages 309–324. Springer, 2019.

[121] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. Spin one’s
wheels? byzantine fault tolerance with a spinning primary. In 28th IEEE Symposium on Reliable
Distributed Systems (SRDS 2009), Niagara Falls, New York, USA, September 27-30, 2009, pages
135–144, 2009.

[122] Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In
Open Problems in Network Security - IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich,
Switzerland, October 29, 2015, Revised Selected Papers, pages 112–125, 2015.

[123] Masafumi Yamashita. Probabilistic self-stabilization and biased random walks on dynamic graphs.
Int. J. Netw. Comput., 2(2):147–159, 2012.

[124] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 347–356. ACM, 2019.

22



[125] Junko Yoshida. Toyota case: Single bit flip that killed, 2013. Available at https:
//www.eetimes.com/toyota-case-single-bit-flip-that-killed (accessed De-
cember 12, 2020).

23

https://www.eetimes.com/toyota-case-single-bit-flip-that-killed
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed

	Introduction
	State Machine Replication
	Byzantine Fault Tolerance
	The connection: BFT and Blockchain
	Randomized BFT
	Preliminaries
	Blockchain-oriented randomized BFT
	Signature-free Randomized Consensus


	Self-stabilization
	Introduction
	Self-Stabilizing BFT
	Randomized Self-stabilization

	Towards a Randomized Self-Stabilizing BFT Solution - Challenges

