EPL646 — Advanced Topics in Databases
Introduction to InfluxDB

Christoforos Panayiotou
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

University
| of Cyprus

Install InfluxDB OSS v?2

 Version 3 is still in alpha so we’ll use version 2

* Go to https://docs.influxdata.com/influxdb/v2/install/ and follow the

instruction for your OS
* Admin rights are needed

After installing, start the InfluxDB deamon
* If successful, you can view the InfluxDB Ul at http://localhost:8086

» After the initial configuration (see next slide) you will be presented with your
API| token — Make sure to save it!

e Continue to install the InfluxDB CLI

* Follow the instructions found here:
https://docs.influxdata.com/influxdb/v2/tools/influx-cli/

5/2/2025 EPL646 — Advanced Topics in Databases

https://docs.influxdata.com/influxdb/v2/install/
http://localhost:8086/
https://docs.influxdata.com/influxdb/v2/tools/influx-cli/

Initial setup process

* During the initial setup process you set the following
* An organization with the name you provide
* A bucket with the name you provide

* An admin authorization with the following properties
* The username and password that you provide

* An token
* Read-write permissions for all resources in the InfluxDB instance
* Create an token
 The API Operator token has all permissions to manage everything in your InfluxDB
instance
* An token has narrower scope

* Navigate to Load Data = API Tokens using the left navigation bar and click on
“+ Generate APl token” and select “All Access APl Token”

* Enter a description for the API token, save it and copy it for safe keeping and usage

Data organization in InfluxDB

* The InfluxDB data model organizes time series data into and

* Bucket: Named location where time series data is stored
* A bucket can contain multiple

* Measurement: Logical grouping for time series data
« All in a given measurement should have the same
* A measurement contains multiple and

* Tags: Key-value pairs with values that differ, but do not change often
* Tags are meant for storing metadata for each point
* Something to identify the source of the data like host, location, station, etc.

* Fields: Key-value pairs with values that change over time
* E.g., temperature, pressure, stock price, etc.

* Timestamp: Timestamp associated with the data
 When stored on disk and queried, all data is ordered by time

* Point: Single data record identified by its measurement, tag keys, tag values, field key,
and timestamp

* Series: A group of points with the same measurement, tag keys, and tag values

5/2/2025 EPL646 — Advanced Topics in Databases

Example InfluxDB query results

_measurement city country _field
202201 th Lond UK t t 12.0
01T12:00-002 weather ondon emperature :
2022-02-

weather London UK temperature 121
01T12:00:00Z
2022:03- th Lond UK t t 15
01T12-00-00Z weather ondon emperature :
2022-04-

weather London UK temperature 5.9

01T12:00:00£

5/2/2025 EPL646 — Advanced Topics in Databases

Writing data

* InfluxDB provides many different options for ingesting or writing data,
including the following:

* Influx user interface (Ul)
InfluxDB HTTP API

 influx CLI
* Telegraf
* InfluxDB client libraries
* Arduino, C#, Dart, Go, Java, JavaScript for browsers, Kotlin, Node.js, PHP, , R, Ruby,
Scala, Swift

* Line protocol
 All data written to InfluxDB is written using line protocol

* A text-based format that lets you provide the necessary information to write a
data point to InfluxDB

Line protocol

* Line protocol elements
* *measurement: String that identifies the measurement to store the data in

* tag set: Comma-delimited list of key value pairs, each representing a tag

* Tag keys and values are unquoted strings

* Spaces, commas, and equal characters must be escaped
* *field set: Comma-delimited list key value pairs, each representing a field

* Field keys are unquoted strings

e Spaces and commas must be escaped

* Field values can be strings (quoted), floats, integers, unsigned integers, or booleans
* timestamp: Unix timestamp associated with the data

* InfluxDB supports up to nanosecond precision

e If the precision of the timestamp is not in nanoseconds, you must specify the precision when writing the
data to InfluxDB

measurement tag set field set timestamp

I I I I
myMeasurement,tagl=vall, tag2=val2 fieldl="v1",6 field2=11 00OOOOOOOEEELEOOOLOOO
T T T

1st comma 1st whitespace 2nd whitespace

5/2/2025 EPL646 — Advanced Topics in Databases 7

Example data line protocol

* Consider a use case where you collect
data from sensors in your home

* Each sensor collects temperature, humidity,
and carbon monoxide readings

* To collect this data, use the following
schema:

°* measurement: home
* tags

* room: Living Room or Kitchen

* Notice the escaped space for !

fields

* temp: temperature in °C (float)

* hum: percent humidity (float)

* co: carbon monoxide in parts per million

(integer)

timestamp: Unix timestamp in second
precision

5/2/2025 EPL646 — Advanced Topics in Databases

home,room=Living\ Room temp=21.1,hum=35.9,co=0i 1641024000
home,room=Kitchen temp=21.0,hum=35.9,co=0i 1641024000
home,room=Living\ Room temp=21.4,hum=35.9,co=0i 1641027600
home,room=Kitchen temp=23.0,hum=36.2,c0=0i 1641027600
home,room=Living\ Room temp=21.8,hum=36.0,co=0i 1641031200
home,room=Kitchen temp=22.7,hum=36.1,co=0i 1641031200
home,room=Living\ Room temp=22.2,hum=36.0,co=0i 1641034800
home,room=Kitchen temp=22.4,hum=36.0,co=0i 1641034800
home,room=Living\ Room temp=22.2,hum=35.9,co=0i 1641038400
home,room=Kitchen temp=22.5,hum=36.0,co=0i 1641038400
home,room=Living\ Room temp=22.4,hum=36.0,co=0i 1641042000
home,room=Kitchen temp=22.8,hum=36.5,co=1i 1641042000
home,room=Living\ Room temp=22.3,hum=36.1,co=0i 1641045600
home,room=Kitchen temp=22.8,hum=36.3,co=1i 1641045600
home,room=Living\ Room temp=22.3,hum=36.1,co=1i 1641049200
home,room=Kitchen temp=22.7,hum=36.2,co=3i 1641049200
home,room=Living\ Room temp=22.4,hum=36.0,co=4i 1641052800
home,room=Kitchen temp=22.4,hum=36.0,co=7i 1641052800
home,room=Living\ Room temp=22.6,hum=35.9,co=5i 1641056400
home,room=Kitchen temp=22.7,hum=36.0,c0=9i 1641056400
home,room=Living\ Room temp=22.8,hum=36.2,co=9i 1641060000
home,room=Kitchen temp=23.3,hum=36.9,c0=18i 1641060000
home,room=Living\ Room temp=22.5,hum=36.3,co=14i 1641063600
home,room=Kitchen temp=23.1,hum=36.6,c0=22i 1641063600
home,room=Living\ Room temp=22.2,hum=36.4,co=17i 1641067200
home,room=Kitchen temp=22.7,hum=36.5,c0=26i 1641067200

Query data with Flux

* Flux is a functional scripting language that lets you query and process data from
InfluxDB and other data sources

 When querying InfluxDB with Flux, there are three primary functions you use:
: Queries data from an InfluxDB bucket

: Filters data based on time bounds
* Flux requires “bounded” queries—queries limited to a specific time range
: Filters data based on column values
* Each row is represented by r and each column is represented by a property of r
* You can apply multiple subsequent filters

* Pipe-forward operator: Flux uses the pipe-forward operator (|>) to pipe the
output of one function as input the next function

* The following query returns the co, hum, and temp fields stored in the

measurement with timestamps between and
from(bucket: "get-started"
range (start: 2022-01-01T08:00:00Z, stop: 2022-01-01T20:00:01Z
filtex(fn: (x) => r. measurement "home"

filtex(fn: () => x. field "co" or r. field "hum" oxr r. field “temp"

Groups and Aggregate or select specific data

* Use the function to regroup your data by specific column
values in preparation for further processing

from(bucket: "get-started")
> range (start: 2022-01-01T08:00:007, stop: 2022-01-01T20:00:017Z)
> filter(fn: (x) => r._measurement == "home")

> group (columns: ["room", " field"])

* For more information about how data is grouped see the Flux data model
documentation (https://docs.influxdata.com/flux/v0/get-started/data-

model/)

» Use Flux aggregate or selector functions to return aggregate or
selected values from each input table
* https://docs.influxdata.com/flux/v0/function-types/#aggregates

5/2/2025 EPL646 — Advanced Topics in Databases 10

https://docs.influxdata.com/flux/v0/get-started/data-model/
https://docs.influxdata.com/flux/v0/get-started/data-model/
https://docs.influxdata.com/flux/v0/function-types/#aggregates

Practice

* Follow the get started guide to add sample data to your InfluxDB
(https://docs.influxdata.com/influxdb/v2/get-started/write/)

* Continue the guide to read the sample data from your InfluxDB

5/2/2025 EPL646 — Advanced Topics in Databases 11

https://docs.influxdata.com/influxdb/v2/get-started/write/

Write data to InfluxDB with Python

Install the InfluxDB Python library: pip install influxdb-client

In your Python program, import the InfluxDB client library and use it to write data to InfluxDB

import influxdb_client
from influxdb_client.client.write_api import SYNCHRONOUS

Define a few variables with the name of your bucket, organization, and token

bucket = # The bucket in which you want to write data

orE = # The organization in which you want to write data

token = # An All Access APl token predefined in your InfluxDB instance
url= # The URL of your InfluxDB instance

Instantiate the client
* The InfluxDBClient object takes three named parameters: url, org, and token

client = influxdb_client.InfluxDBClient(url=ur/, token= , org=orq)

Instantiate a write client using the client object and the write _api method
* Use the write_api method to configure the object

write_api = client.write_api(write_options=SYNCHRONOUS)

Create a object and write it to InfluxDB using the write method of the API object
* The write method requires three parameters: bucket, org, and record

p = influxdb_client.Point().tagS ,).field(,)
write_api.write(bucket= , org=org, record=

5/2/2025 EPL646 — Advanced Topics in Databases

12

Query data from InfluxDB with Python

* |nstantiate the query client
query_api = client.query_api()

* Create a Flux query, and then format it as a Python string
query =

* The query client sends the Flux query to InfluxDB and returns a Flux object with a table structure

* Pass to the query() method two named parameters: org and query
result = query_api.query(org=org, query=)
* |terate through the tables and records in the Flux object
* Use the get value() method to return values and the get field() method to return fields

results =[]
for table in result:
for record in table.records:
results.append((record.get_field(), record.get_value()))

print(results)

[(temperature, 25.3)]

5/2/2025 EPL646 — Advanced Topics in Databases 13

Query data from InfluxDB with Python

* The Flux object provides the following methods for accessing your
data:
: Returns the measurement name of the record

: Returns the field name

: Returns the actual field value

: Returns a map of column values
: Returns a value from the record for given column

: Returns the time of the record

: Returns the inclusive lower time bound of all records in the
current table

: Returns the exclusive upper time bound of all records in the
current table

Importing CSV files to InfluxDB with Python

CSV annotations

* Annotations, either in the CSV file itself or provided as CLI options, are properties of the columns in the CSV file. They
describe how to translate each column into either a measurement name, tag, field, or timestamp

* The following demonstrates adding annotations to our example data to a file:

iot-devices,5a,72.3,34.1,2022-10-01T12:01:00Z
iot-devices,5a,72.1,33.8,2022-10-02T12:01:00Z
iot-devices,5a,72.2,33.7,2022-10-03T12:01:00Z
The datatypes in this example are specified as follows:

* measurement: states which column to use as the measurement name
* If no column exists, this can also be specified as a header via the CLI

* tag: specifies which column or columns are to be treated as string tag data
* These are optional, but help with querying and indexing data in InfluxDB

* double: is used on two columns to specify that they contain double data types

* dateTime: specifies that the final column contains the timestamp of the record (format used is RFC3339)

Users can also specify additional data types for fields: double, long, unsignedLong, Boolean, string, ignored
(used if a column is not useful or required)

For timestamps, there are built-in parsing capabilities for: RFC3339 (e.g. 2020-01-01T00:00:002),
RFC3339Nano (e.g. 2020-01-01T00:00:00.000000000Z), Unix timestamps (e.g. 1577836800000000000)

* |f the timestamp is not in one of these formats, then users need to specify the format of the timestamp themselves (e.g.
dateTime:2006-01-02) as part of the annotation using Go reference time

Importing CSV files to InfluxDB with Python

* |f a user has a very large CSV file or files the%/ want to push to InfluxDB,
Pandas provides an easy way to read a CSV file with headers quickly

* Combined with the built-in functionality of the InfluxDB client libraries to write
Pandas DataFrames, a user can read a CSV in chunks and then send those chunks into

InfluxDB

* In the following example, a user is reading a CSV containing thousands of
rows containing VIX stock data:
symbol,open,high,low,close,timestamp
vix,13.290000,13.910000,13.290000,13.570000,135935640000000000

vix,13.870000,13.880000,13.040000,13.310000,135944280000000000
vix,13.640000,14.330000,13.600000,14.320000,135952920000000000

* To avoid reading the entire file into memory, the user can take advantage
of Pandas’ function, which will read the column names based on
the CSV header and chunk the file into 1,000-row chunks

* Finally, use the InfluxDB client library to send those groups of 1,000 rows to InfluxDB
after specifying the measurement, tag, and timestamp columns (see next slide)

Importing CSV files to InfluxDB with Python

from influxdb_client import InfluxDBClient, WriteOptions
import pandas as pd

with InfluxDBClient.from_env_properties() as client:
for df in pd.read_csv(, chunksize=1000):
with client.write_api() as write_api:
try:
write_api.write(
record=df,
bucket=)
data_frame_measurement _name=)
data_frame_tag_columns=]]'],
data_frame_timestamp_column=)

except InfluxDBError as e:
print(e)

5/2/2025 EPL646 — Advanced Topics in Databases

17

Practice

* Check https://github.com/influxdata/influxdb2-sample-data and
Insert a large data set to your InfluxDB

* Write some simple queries to view your data
* Write some aggregate queries for your data

5/2/2025 EPL646 — Advanced Topics in Databases

https://github.com/influxdata/influxdb2-sample-data

Questions?

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

‘> Qo

. ; -w—

University -
' of Cyprus o DMSL

P ®" Gucy

	Slide 1: EPL646 – Advanced Topics in Databases Introduction to InfluxDB Christoforos Panayiotou http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html
	Slide 2: Install InfluxDB OSS v2
	Slide 3: Initial setup process
	Slide 4: Data organization in InfluxDB
	Slide 5: Example InfluxDB query results
	Slide 6: Writing data
	Slide 7: Line protocol
	Slide 8: Example data line protocol
	Slide 9: Query data with Flux
	Slide 10: Groups and Aggregate or select specific data
	Slide 11: Practice
	Slide 12: Write data to InfluxDB with Python
	Slide 13: Query data from InfluxDB with Python
	Slide 14: Query data from InfluxDB with Python
	Slide 15: Importing CSV files to InfluxDB with Python
	Slide 16: Importing CSV files to InfluxDB with Python
	Slide 17: Importing CSV files to InfluxDB with Python
	Slide 18: Practice
	Slide 19: Questions? http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

