
EPL646 – Advanced Topics in Databases

Introduction to InfluxDB

Christoforos Panayiotou
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

Install InfluxDB OSS v2

• Version 3 is still in alpha so we’ll use version 2

• Go to https://docs.influxdata.com/influxdb/v2/install/ and follow the
instruction for your OS
• Admin rights are needed

• After installing, start the InfluxDB deamon
• If successful, you can view the InfluxDB UI at http://localhost:8086

• After the initial configuration (see next slide) you will be presented with your
API token – Make sure to save it!

• Continue to install the InfluxDB CLI
• Follow the instructions found here:

https://docs.influxdata.com/influxdb/v2/tools/influx-cli/

5/2/2025 EPL646 – Advanced Topics in Databases 2

https://docs.influxdata.com/influxdb/v2/install/
http://localhost:8086/
https://docs.influxdata.com/influxdb/v2/tools/influx-cli/

Initial setup process
• During the initial setup process you set the following

• An organization with the name you provide
• A bucket with the name you provide
• An admin authorization with the following properties

• The username and password that you provide
• An API Operator token

• Read-write permissions for all resources in the InfluxDB instance

• Create an All Access API token
• The API Operator token has all permissions to manage everything in your InfluxDB

instance
• An All Access token has narrower scope
• Navigate to Load Data → API Tokens using the left navigation bar and click on

“+ Generate API token” and select “All Access API Token”
• Enter a description for the API token, save it and copy it for safe keeping and usage

5/2/2025 EPL646 – Advanced Topics in Databases 3

Data organization in InfluxDB
• The InfluxDB data model organizes time series data into buckets and measurements

• Bucket: Named location where time series data is stored
• A bucket can contain multiple measurements

• Measurement: Logical grouping for time series data
• All points in a given measurement should have the same tags
• A measurement contains multiple tags and fields

• Tags: Key-value pairs with values that differ, but do not change often
• Tags are meant for storing metadata for each point
• Something to identify the source of the data like host, location, station, etc.

• Fields: Key-value pairs with values that change over time
• E.g., temperature, pressure, stock price, etc.

• Timestamp: Timestamp associated with the data
• When stored on disk and queried, all data is ordered by time

• Point: Single data record identified by its measurement, tag keys, tag values, field key,
and timestamp

• Series: A group of points with the same measurement, tag keys, and tag values

EPL646 – Advanced Topics in Databases5/2/2025 4

Example InfluxDB query results

5/2/2025 EPL646 – Advanced Topics in Databases 5

Writing data
• InfluxDB provides many different options for ingesting or writing data,

including the following:
• Influx user interface (UI)
• InfluxDB HTTP API
• influx CLI
• Telegraf
• InfluxDB client libraries

• Arduino, C#, Dart, Go, Java, JavaScript for browsers, Kotlin, Node.js, PHP, Python, R, Ruby,
Scala, Swift

• Line protocol
• All data written to InfluxDB is written using line protocol
• A text-based format that lets you provide the necessary information to write a

data point to InfluxDB

5/2/2025 EPL646 – Advanced Topics in Databases 6

Line protocol

5/2/2025 EPL646 – Advanced Topics in Databases 7

• Line protocol elements
• *measurement: String that identifies the measurement to store the data in
• tag set: Comma-delimited list of key value pairs, each representing a tag

• Tag keys and values are unquoted strings
• Spaces, commas, and equal characters must be escaped

• *field set: Comma-delimited list key value pairs, each representing a field
• Field keys are unquoted strings
• Spaces and commas must be escaped
• Field values can be strings (quoted), floats, integers, unsigned integers, or booleans

• timestamp: Unix timestamp associated with the data
• InfluxDB supports up to nanosecond precision
• If the precision of the timestamp is not in nanoseconds, you must specify the precision when writing the

data to InfluxDB

Example data line protocol
• Consider a use case where you collect

data from sensors in your home
• Each sensor collects temperature, humidity,

and carbon monoxide readings

• To collect this data, use the following
schema:
• measurement: home
• tags

• room: Living Room or Kitchen
• Notice the escaped space for Living Room!

• fields
• temp: temperature in °C (float)
• hum: percent humidity (float)
• co: carbon monoxide in parts per million

(integer)
• timestamp: Unix timestamp in second

precision

5/2/2025 EPL646 – Advanced Topics in Databases 8

home,room=Living\ Room temp=21.1,hum=35.9,co=0i 1641024000
home,room=Kitchen temp=21.0,hum=35.9,co=0i 1641024000
home,room=Living\ Room temp=21.4,hum=35.9,co=0i 1641027600
home,room=Kitchen temp=23.0,hum=36.2,co=0i 1641027600
home,room=Living\ Room temp=21.8,hum=36.0,co=0i 1641031200
home,room=Kitchen temp=22.7,hum=36.1,co=0i 1641031200
home,room=Living\ Room temp=22.2,hum=36.0,co=0i 1641034800
home,room=Kitchen temp=22.4,hum=36.0,co=0i 1641034800
home,room=Living\ Room temp=22.2,hum=35.9,co=0i 1641038400
home,room=Kitchen temp=22.5,hum=36.0,co=0i 1641038400
home,room=Living\ Room temp=22.4,hum=36.0,co=0i 1641042000
home,room=Kitchen temp=22.8,hum=36.5,co=1i 1641042000
home,room=Living\ Room temp=22.3,hum=36.1,co=0i 1641045600
home,room=Kitchen temp=22.8,hum=36.3,co=1i 1641045600
home,room=Living\ Room temp=22.3,hum=36.1,co=1i 1641049200
home,room=Kitchen temp=22.7,hum=36.2,co=3i 1641049200
home,room=Living\ Room temp=22.4,hum=36.0,co=4i 1641052800
home,room=Kitchen temp=22.4,hum=36.0,co=7i 1641052800
home,room=Living\ Room temp=22.6,hum=35.9,co=5i 1641056400
home,room=Kitchen temp=22.7,hum=36.0,co=9i 1641056400
home,room=Living\ Room temp=22.8,hum=36.2,co=9i 1641060000
home,room=Kitchen temp=23.3,hum=36.9,co=18i 1641060000
home,room=Living\ Room temp=22.5,hum=36.3,co=14i 1641063600
home,room=Kitchen temp=23.1,hum=36.6,co=22i 1641063600
home,room=Living\ Room temp=22.2,hum=36.4,co=17i 1641067200
home,room=Kitchen temp=22.7,hum=36.5,co=26i 1641067200

Query data with Flux
• Flux is a functional scripting language that lets you query and process data from

InfluxDB and other data sources

• When querying InfluxDB with Flux, there are three primary functions you use:
• from(): Queries data from an InfluxDB bucket
• range(): Filters data based on time bounds

• Flux requires “bounded” queries—queries limited to a specific time range
• filter(): Filters data based on column values

• Each row is represented by r and each column is represented by a property of r
• You can apply multiple subsequent filters

• Pipe-forward operator: Flux uses the pipe-forward operator (|>) to pipe the
output of one function as input the next function

• The following query returns the co, hum, and temp fields stored in the home
measurement with timestamps between 2022-01-01T08:00:00Z and
2022-01-01T20:00:01Z

5/2/2025 EPL646 – Advanced Topics in Databases 9

Groups and Aggregate or select specific data

• Use the group() function to regroup your data by specific column
values in preparation for further processing

• For more information about how data is grouped see the Flux data model
documentation (https://docs.influxdata.com/flux/v0/get-started/data-
model/)

• Use Flux aggregate or selector functions to return aggregate or
selected values from each input table
• https://docs.influxdata.com/flux/v0/function-types/#aggregates

5/2/2025 EPL646 – Advanced Topics in Databases 10

https://docs.influxdata.com/flux/v0/get-started/data-model/
https://docs.influxdata.com/flux/v0/get-started/data-model/
https://docs.influxdata.com/flux/v0/function-types/#aggregates

Practice

• Follow the get started guide to add sample data to your InfluxDB
(https://docs.influxdata.com/influxdb/v2/get-started/write/)

• Continue the guide to read the sample data from your InfluxDB

EPL646 – Advanced Topics in Databases5/2/2025 11

https://docs.influxdata.com/influxdb/v2/get-started/write/

Write data to InfluxDB with Python
• Install the InfluxDB Python library: pip install influxdb-client

• In your Python program, import the InfluxDB client library and use it to write data to InfluxDB
import influxdb_client
from influxdb_client.client.write_api import SYNCHRONOUS

• Define a few variables with the name of your bucket, organization, and token
bucket = "<my-bucket>" # The bucket in which you want to write data
org = "<my-org>" # The organization in which you want to write data
token = "<my-token>" # An All Access API token predefined in your InfluxDB instance
url= "http://localhost:8086" # The URL of your InfluxDB instance

• Instantiate the client
• The InfluxDBClient object takes three named parameters: url, org, and token

client = influxdb_client.InfluxDBClient(url=url, token=token, org=org)

• Instantiate a write client using the client object and the write_api method
• Use the write_api method to configure the write_api object

write_api = client.write_api(write_options=SYNCHRONOUS)

• Create a point object and write it to InfluxDB using the write method of the API write_api object
• The write method requires three parameters: bucket, org, and record

p = influxdb_client.Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
write_api.write(bucket=bucket, org=org, record=p)

5/2/2025 EPL646 – Advanced Topics in Databases 12

Query data from InfluxDB with Python
• Instantiate the query client

query_api = client.query_api()

• Create a Flux query, and then format it as a Python string
query = 'from(bucket:"my-bucket")\
|> range(start: -10m)\
|> filter(fn:(r) => r._measurement == "my_measurement")\
|> filter(fn:(r) => r.location == "Prague")\
|> filter(fn:(r) => r._field == "temperature")'
• The query client sends the Flux query to InfluxDB and returns a Flux object with a table structure

• Pass to the query() method two named parameters: org and query
result = query_api.query(org=org, query=query)

• Iterate through the tables and records in the Flux object
• Use the get_value() method to return values and the get_field() method to return fields
results = []
for table in result:
 for record in table.records:
 results.append((record.get_field(), record.get_value()))

print(results)

[(temperature, 25.3)]

5/2/2025 EPL646 – Advanced Topics in Databases 13

Query data from InfluxDB with Python

• The Flux object provides the following methods for accessing your
data:
• get_measurement(): Returns the measurement name of the record

• get_field(): Returns the field name

• get_value(): Returns the actual field value

• values: Returns a map of column values

• values.get("<your tag>"): Returns a value from the record for given column

• get_time(): Returns the time of the record

• get_start(): Returns the inclusive lower time bound of all records in the
current table

• get_stop(): Returns the exclusive upper time bound of all records in the
current table

5/2/2025 EPL646 – Advanced Topics in Databases 14

Importing CSV files to InfluxDB with Python
• CSV annotations

• Annotations, either in the CSV file itself or provided as CLI options, are properties of the columns in the CSV file. They
describe how to translate each column into either a measurement name, tag, field, or timestamp

• The following demonstrates adding annotations to our example data to a file:
#datatype measurement,tag,double,double,dateTime:RFC3339
name,building,temperature,humidity,time
iot-devices,5a,72.3,34.1,2022-10-01T12:01:00Z
iot-devices,5a,72.1,33.8,2022-10-02T12:01:00Z
iot-devices,5a,72.2,33.7,2022-10-03T12:01:00Z

• The datatypes in this example are specified as follows:
• measurement: states which column to use as the measurement name

• If no column exists, this can also be specified as a header via the CLI

• tag: specifies which column or columns are to be treated as string tag data
• These are optional, but help with querying and indexing data in InfluxDB

• double: is used on two columns to specify that they contain double data types
• dateTime: specifies that the final column contains the timestamp of the record (format used is RFC3339)

• Users can also specify additional data types for fields: double, long, unsignedLong, Boolean, string, ignored
(used if a column is not useful or required)

• For timestamps, there are built-in parsing capabilities for: RFC3339 (e.g. 2020-01-01T00:00:00Z),
RFC3339Nano (e.g. 2020-01-01T00:00:00.000000000Z), Unix timestamps (e.g. 1577836800000000000)

• If the timestamp is not in one of these formats, then users need to specify the format of the timestamp themselves (e.g.
dateTime:2006-01-02) as part of the annotation using Go reference time

5/2/2025 EPL646 – Advanced Topics in Databases 15

Importing CSV files to InfluxDB with Python
• If a user has a very large CSV file or files they want to push to InfluxDB,

Pandas provides an easy way to read a CSV file with headers quickly
• Combined with the built-in functionality of the InfluxDB client libraries to write

Pandas DataFrames, a user can read a CSV in chunks and then send those chunks into
InfluxDB

• In the following example, a user is reading a CSV containing thousands of
rows containing VIX stock data:

symbol,open,high,low,close,timestamp
vix,13.290000,13.910000,13.290000,13.570000,135935640000000000
vix,13.870000,13.880000,13.040000,13.310000,135944280000000000
vix,13.640000,14.330000,13.600000,14.320000,135952920000000000

• To avoid reading the entire file into memory, the user can take advantage
of Pandas’ read_csv function, which will read the column names based on
the CSV header and chunk the file into 1,000-row chunks
• Finally, use the InfluxDB client library to send those groups of 1,000 rows to InfluxDB

after specifying the measurement, tag, and timestamp columns (see next slide)

5/2/2025 EPL646 – Advanced Topics in Databases 16

Importing CSV files to InfluxDB with Python
from influxdb_client import InfluxDBClient, WriteOptions
import pandas as pd

with InfluxDBClient.from_env_properties() as client:
 for df in pd.read_csv("data.csv", chunksize=1000):
 with client.write_api() as write_api:
 try:
 write_api.write(
 record=df,
 bucket="my-bucket",
 data_frame_measurement_name="stocks",
 data_frame_tag_columns=["symbol"],
 data_frame_timestamp_column="date",
)
 except InfluxDBError as e:
 print(e)

5/2/2025 EPL646 – Advanced Topics in Databases 17

Practice

• Check https://github.com/influxdata/influxdb2-sample-data and
Insert a large data set to your InfluxDB

• Write some simple queries to view your data

• Write some aggregate queries for your data

EPL646 – Advanced Topics in Databases5/2/2025 18

https://github.com/influxdata/influxdb2-sample-data

Questions?

http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

	Slide 1: EPL646 – Advanced Topics in Databases Introduction to InfluxDB Christoforos Panayiotou http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html
	Slide 2: Install InfluxDB OSS v2
	Slide 3: Initial setup process
	Slide 4: Data organization in InfluxDB
	Slide 5: Example InfluxDB query results
	Slide 6: Writing data
	Slide 7: Line protocol
	Slide 8: Example data line protocol
	Slide 9: Query data with Flux
	Slide 10: Groups and Aggregate or select specific data
	Slide 11: Practice
	Slide 12: Write data to InfluxDB with Python
	Slide 13: Query data from InfluxDB with Python
	Slide 14: Query data from InfluxDB with Python
	Slide 15: Importing CSV files to InfluxDB with Python
	Slide 16: Importing CSV files to InfluxDB with Python
	Slide 17: Importing CSV files to InfluxDB with Python
	Slide 18: Practice
	Slide 19: Questions? http://www.cs.ucy.ac.cy/~dzeina/courses/epl646/labs/lab.html

